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Deep Reinforcement Learning for Shared Offloading
Strategy in Vehicle Edge Computing

Xin Peng ", Zhengke Han, Wenwu Xie

Abstract—Vehicular edge computing (VEC) effectively reduces
the computing load of vehicles by offloading computing tasks
from vehicle terminals to edge servers. However, offloading of
tasks increase in quantity the transmission time and energy of the
network. In order to reduce the computing load of edge servers
and improve the system response, a shared offloading strategy
based on deep reinforcement learning is proposed for the complex
computing environment of Internet of Vehicles (IoVs). The shared
offloading strategy exploits the commonality of vehicles task re-
quests, similar computing tasks coming from different vehicles can
share the computing results of former task submitted. The shared
offloading strategy can be adapted to the complex scenarios of the
IoVs. Each vehicle can share the offloading conditions of the VEC
servers, and then adaptively select three computing modes: local
execution, task offloading, and shared offloading. In this article,
the network state and offloading strategy space are the input of
the deep reinforcement learning (DRL). Through the DRL, each
task unit selects the offloading strategy with the optimal energy
consumption at each time period in the dynamic IoVs transmission
and computing environment. Compared with the existing proposals
and DRL-based algorithms, it can effectively reduce the delay and
energy consumption required for tasks offloading.

Index Terms—Deep reinforcement learning (DRL), Internet of
Vehicles (IoVs), task shared offloading, vehicular edge computing
(VEC).

1. INTRODUCTION

NTERNET of Vehicles (IoVs) have undertaken a wealth
I of application services, including autonomous driving, path
planning, collision avoidance, and in-vehicle entertainment [1].
Applications of IoVs are usually computing and communication
intensive tasks, requiring large computing and energy consump-
tion, and itis difficult to rely on vehicles for localized processing.
With the continuous popularization of 5G networks, a large num-
ber of servers are deployed on the edge side closed to network
users, providing effective computing power support for IoVs.
By offloading the computing tasks of vehicles to edge server
for execution, vehicular edge computing (VEC) can effectively
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reduce the computing load of vehicles, and then reduces the
response delay of the applications and extends the battery life of
the vehicles. VEC servers are often deployed in network access
points, such as base stations (BSs) and road side units (RSUs)
in order to improve the flexibility of the VEC network [2]. RSU
has been widely deployed along major streets and equipped with
edge servers to provide extensive network access coverage [3].

Although the task offloading strategy of edge computing can
effectively expand the computing power of vehicles, a large
number of vehicles need to offload tasks to edge servers for
execution that will cause network congestion, increase task
response delay, and system energy consumption [4]. Therefore,
choosing the efficient task offloading strategy of BS or RSU is
a key issue for VEC applications [5]. Existing works mainly
focus on current states of tasks and edge servers. Migration
decisions are made based on task execution parameters, com-
puting resources of edge servers [6], [7]. There is relatively little
literature to integrate the global and time-varying information of
the network for optimal decision making [8], [9]. The problems
of global optimization are generally nonconvex functions, and
global optimization cannot be effectively performed without
satisfying convex optimization conditions [10], [11]. Globalized
information is usually difficult to obtain for the distributed ar-
chitecture of the IoVs [12]. The emergence of machine learning
makes the realization of global optimization possible [13].

Reinforcement learning is an important branch of machine
learning. Recently, there have been many literatures applying
it to task offloading optimization of IoVs [14], [15]. Deep rein-
forcement learning (DRL) is a combination of deep learning and
reinforcement learning. Its core idea is to express the decision-
making process as a Markov decision process (MDP). DRL can
also combine perception and decision-making capabilities to
provide solutions for complex systems [16], [17].

Although the edge server has to process a large number of task
computing requests from vehicles, many computing requests
from different vehicles are actually similar computing tasks. If
similar computing tasks can share computing results without
repeated computing for each task, it will save a lot of computing
cost and improve the response speed of the system. Based on
this consideration, this article proposes a shared task offloading
strategy for VEC. The successfully matched task unit does not
need to be recomputed by the VEC server, and the VEC server
directly retrieves the corresponding results from its memory and
returns it to the user. This strategy does not need to execute the
computation for each computing tasks, the offloading efficiency
will be improved.
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The proposed strategy can construct the effective offloading
scheme in the dynamic environment of IoVs without the prior
information of the network model. Because each application
service of IoVs is composed of subprograms with independent
functions, we divide each computing task into relatively inde-
pendent task units. Different from the overall task offloading,
after the task is divided into task units, the decision space for task
offloading will be larger. In the specific implementation process,
a gradient strategy is used to solve the possible overfitting
problem of DRL.

The contributions of this article are as follows.

1) We propose a shared offload strategy, in which, tasks are
decomposed into relatively independent task units, and
similar task units share the computing results in the task
offloading process of VEC. Thus, the edge computing
cost is reduced and the edge service response efficiency is
improved.

2) A task shared offloading optimization model is estab-
lished, with communication and computing cost as pa-
rameters. Based on the model, DRL method is used to
maximize the system utility and minimize the energy
consumption in the task offloading decision space.

3) Weimplemented the shared offloading strategy on Python.
The simulation results under different system parameters
are analyzed. Numerical results verify the advantages of
shared offloading strategy in terms of energy consumption
and delay optimization.

The structure of this article is as follows. In Section II, we
discuss the related works. Section III proposes system model.
Section IV introduces the shared offloading strategy. Section V
gives the DRL solution of the shared offloading strategy. Sec-
tion VI evaluates the performance of the algorithm through
simulation. Finally, Section VII concludes this article.

II. RELATED WORK

We summarize the existing works about edge computing task
offloading for energetic optimization in this section.

Appropriate resource allocation of VEC can promote the data
transmission rate, which can satisfy the requirements of latency-
sensitive service deadline constraints [18]. Luo et al. [19] use
graph theory and greedy algorithm to optimize the delay con-
straints in the process of vehicle data prefetching and data
distribution. Hu et al. [10] used minority games to reduce the
delay of task offloading. From the perspective of power saving
and energy consumption, Zhang et al. [20] analyzed the occupied
channel priority of MEC computing tasks, and then optimized
the channel allocation resources for all computing tasks based
on the priority.

During the task offloading process, the communication and
computation processes consume energy and also produce time
delay [21]-[23]. Joint optimization of time delay and energy
consumption in computing, storage, and communication has
become an important research direction. In the case of a given
task offloading scheduling decision, Mao et al. [9] use convex
optimization techniques to determine the optimal transmit power
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allocation. Tran et al. [24] utilize convex and quasi-convex opti-
mization techniques to jointly optimize task offloading decision,
mobile user uplink transmission power, and computing resource
allocation at the MEC servers.

Recently, machine learning algorithm has been widely used
in edge offloading and caching because of its powerful data
processing and decision-making ability. Among machine learn-
ing algorithms, DRL has significant advantages in accuracy and
efficiency compared with traditional methods. Some literatures
apply DRL to the optimization of energy consumption and delay
of task offloading [25], [26]. There are also literatures that take
maximizing system utility as the optimization goal [15]-[17].
Zhan et al. [15] maximize the utility of multiple users through
game theory and DRL. Chen et al. [16] proposed a resource
allocation scheme that can dynamically coordinate computing
and communication resources and improve the total return of
network operators. Hu ef al. [17] studied the problems of the
joint communication, caching and computing problem, and es-
tablished a DRL multitimescale model and its mobility-aware
reward estimation method. Ning et al. [27] developed an intelli-
gent flow control scheme by studying DRL, which can increase
the system profit of mobile network operators and effectively
allocate network resources.

In another works, the task offloading model is established
with the joint constraints of communication resources and com-
puting power [28]-[30]. For the multiple-access edge server,
Maurice et al. [28] proposed a work that solves the problem
of offloading and subcarrier allocation in the MEC system
through DRL, which greatly improves the computation speed
of the multiple-access edge computing system. Liu ez al. [29]
studied the problem of offloading and resource allocation in
VEC. Taking into account the delay of computing tasks, a
DRL-based vehicle-assisted offloading scheme was proposed
and maximize the long-term utility of the network. In terms
of system utility and offloading reliability, Zhang et al. [30]
considered the choice of target server and the determination of
data transmission methods, and proposed an optimal offloading
strategy based on DRL.

Different from constructing optimal task offloading and trans-
fer schemes based on the binary decision mechanism of task
migration, some works have studied multiple offloading modes
[31], [32]. For the computation offload scheduling problem,
Zhan et al. [33] study the scheduling position and scheduling
time of each task, trades off task delay and energy consumption
through DRL, and minimizes long-term costs. DRL algorithms
suffer from signaling overhead and computational complexity.
Huang et al. [34] use multiple agents to share model parameters
and minimize system energy consumption in edge computing
scenarios while reducing the signaling overhead and computa-
tional complexity of the DRL algorithm.

We can find that the existing solutions use DRL on a limited
decision space, and cannot give full play to the advantages in
system perception and decision. The overfitting problem of DRL
is not considered, resulting in the efficiency of task offloading
and transmission decision-making reduced. We decompose the
tasks into relatively independent task units, and let similar tasks
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Fig. 1. Task offloading in IoVs.

share the computing results. Thus, the decision space of task
offloading is effectively expanded, which is conducive to ob-
taining the optimal task offloading decision based on DRL.

III. SYSTEM MODEL

Fig. 1 shows a fifth-generation (5G) network supported loVs
consisting of many vehicles equipped with dual wireless inter-
face. RSUs provide services for the vehicles in its coverage.
Each macro BS have wide area coverage. In the scenario, macro
BS forms a wide area cell. Each RSU divides the highway into
a microcell, which contain multiple vehicles. BS and RSU are
equipped with VEC servers that provide computing service for
vehicle users. All vehicles within the coverage of BS or RSU can
be served by the VEC server of corresponding BS or RSU. The
input of each VEC server is the offloading task coming from
its served vehicles, and the output is the computed results of
vehicles offloaded tasks.

When the vehicle enters the service range of the VEC, it
is assumed that the length of the service segment of the BS
currently serving is L, the length of the service segment of the
RSU is Lo, and the average speed of the vehicle is v. Then,
the time when the vehicle receives service at the VEC server
of BS and RSU is ¢} = % and ¢t = %, respectively. Vehicle
applications are made up of subprogram modules. Therefore, we
decompose vehicle application services into relatively indepen-
dent task units according to the functions of the modules. Task
unit is the basic component of vehicle computing task. Different
vehicle computing tasks may have multiple identical task units.
In the procedure of task offloading computation, the task units
are cached in the VEC server first, and then the first-come,
first-served strategy is adopted. The execution of the task unit
will occupy the computing and communication resources of the
VEC server. The roads and vehicles in the figure are covered
by two different types of access networks that is cellular and
DSRC networks. Cellular networks provided by BS and DSRC
networks provided by RSU. The cellular network and DSRC
operate on different and nonoverlapping spectrums. Compared
with BS with seamless coverage and high data transmission cost,
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RSU provides uneven coverage and free access services. Vehicle
users need to pay for using the cellular network and VEC servers.
The vehicles can offload tasks to the VEC server through V2B
and V2R. V2B is suitable for the scenario where the vehicles
cannot obtain the network service provided by RSU.

This article assumes that a task is decomposed into N task
units, and each task unit ¢ is assigned an ID. The ID of ith
task unit includes six fields that are the size d; of the task unit,
the calculation amount ¢; required by the task unit, the task
execution time limit ¢;"**, task function (;, task unit generation
time ¢7, and period of validity A¢, of task computation result.
Task execution time limit ¢"** indicates that the task execution
result must be returned within ¢** time, otherwise the task fails.
Task function (; is determined by the functional attributes of
the task unit itself. Task unit that has the same (; field is with
the same function. For the task unit generated by the vehicles,
generation time ¢{ is the generation time of the task unit. While
for the task unit cached by the VEC server, this field is the time
when the task unit enters the VEC server ID pool. Effective
duration of calculation result At; represents the effective time
of the computation result of the task unit.

When the task unit is offloaded to the VEC server for execu-
tion, its ID and computation results will be saved in the ID pool.
VEC server ID pool has limited space. When the ID pool is full,
the new arrived task unit ID will overwrite the previous data.
The coverage mechanism adopts the principle of least recent
use. Task IDs that have not been matched for a long time are
also less likely to be used in the future. When new task units
come in, these task units will be overwritten first. When a task
unit need to offload to an VEC server, the task unit ID will be
matched with the ID in ID pool of the VEC server. If the match is
successful, the VEC server will directly return the cached results
to the vehicle. This shared offloading strategy greatly reduces
the energy consumption of the VEC servers and improves the
efficiency of offloading.

For ease of reference, the main variates used in this article are
summarized in Table L.

IV. SHARED OFFLOADING STRATEGY: ANALYSIS AND
PROBLEM FORMULATION

In this section, we first elaborate the matching scheme of
task shared offloading. Then, we establish a task offloading
optimization model.

A. Analysis of Matching Scheme of Task Shared Offloading

The proposed offloading strategy takes energy consumption,
execution delay, and computation cost as the main optimization
goal. Both local computing and offloading of tasks will bring
energy consumption and delay. The task offloading decision
first needs to make a balancing between local computing and
offloading computing. When the vehicular computation capacity
is insufficient, the task units can be offloaded to the VEC
servers of the RSU or BS for computation through wireless
communication links. Whether the task unit offloaded to the
VEC server is computed directly or share the former cached
result depends on the matching result of the task unit ID. Before
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TABLE I
MAIN VARIABLES

VARIATE DESCRIPTION

d, The data size of task unit i

¢ The required CPU cycles of task unit i

r’ The transmission rate of vehicle to BS

pl The power of data transmission between
vehicle and BS

g’ Channel gain between vehicle and BS

o’ Background noise power

rr The transmission rate of task unit i
communicating with RSU

pr Data transmission power between vehicle
and RSU

gf Channel gain between vehicle and RSU

e’ The energy consumption of the VEC server
on the BS for computing task unit i

1 The frequency of the CPU cycle of the
VEC server in the BS

ef The energy consumption of the VEC server
on the RSU for computing task unit i

fe The CPU frequency of the VEC server in
the RSU

f The local CPU frequency of the vehicle

I Transmission delay of communication
between task unit /7 and BS

£f Transmission delay of communication
between task unit 7 and RSU

e The maximum time limit of task unit i

Structure of task ID
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Fig. 2.  Shared offloading strategy.

the task is transmitted to the VEC server, it has been divided
into independent task units. Then, the shared offloading process
consists of two steps: task matching and task execution.

1) Task Matching: Fig.2 shows the task unit ID structure and
task unit offloading computation procedure. The task generated
by a vehicle is decomposed into relatively independent task
units. Then, each decomposed task unit is given a task ID
according to its attributes. The structure of the task ID contains
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the six fields mentioned earlier. In task ID, only the task function
¢, task unit generation time ¢7, and period of validity A¢; are
used for task ID matching. Task units with the same task ID
function field are similar task units. Only similar task units can
match successfully.

During task unit matching, it is necessary to compare task ID
function field ¢; first. Then, it is compared that the difference
between the generation time ¢! of the new arrived task unit ¢
and the generation time t? of the task unit j cached in ID pool of
VEC server. If the generation time ¢ of new arrived task unit
is within the validity period of cached task unit j of VEC server,
thatis t{ < t7 4 At;, then the matching between task unit i and
Jj is successful. The VEC server can directly fetch the cached
result of task unit j as the result of task unit ¢ and return it to the
vehicle. Similarly, if the generation time t7 of new arrived task
unit ¢ is not within the validity period of cached task unit j of
VEC server, that is t7 > t? + At;, then the matching between
task unit ¢ and j is failed. At this point, the VEC server will have
to execute the task unit ¢, and return the result to the vehicle.

2) Task Execution: The task unit ID is first transmitted to
the VEC server through vehicle to BS (V2B) or vehicle to RSU
(V2R) links. Then, the task unit ID matches the task ID cached
in the VEC server ID pool. If the task unit ID is successfully
matched, the VEC server fetches the results of matched task
units from the ID pool and returns it to the vehicle. For the task
unit whose ID matching fails, the computation result is returned
to the vehicle after the task unit is computed by the CPU of the
VEC server.

The execution procedure is shown in Fig. 3. Before task of-
floading, the function field of task ID 1 matches the task function
field of VEC server ID pool cached successfully (¢; = ¢; ), and
the generation time of task ID 1 is within the effective time
of VEC server ID pool cache task (t{ < t{ + At7), then task
ID 1 matches successfully. However, although function field of
task ID 3 matched successfully, its generation time are out of
effective time of cached task in VEC server ID pool. Therefore,
task ID 3 match failed.
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The length of validity period At; depends on the task function.
Give an example, if the cached task unit j is the weather at a
certain time, its validity period may be 12 h. However, if the
cached task unit j is the traffic condition of a road section at a
certain time, its validity period may not exceed 1 h. Because the
BS and RSU have limited coverage, the vehicles cannot offload
the task sometimes. If without BS and RSU, vehicle task units
can only be computed locally. In this case, if the vehicle does
not have sufficient computing power, the computation of the
task cannot be completed. Different computing locations have
different computing power and computing cost. The required
computing power and maximum time limit of each task unit
impacts the computing location of the task unit.

B. Problem Formulation

Task offloading energy consumption consists of task transmis-
sion and task computing energy consumption. Each task unit is
indivisible, and it can only have one computation mode in period
t. We use Ii’t|*:b,bs,r,rs,l as the offload mode flag of task unit
i at time ¢, and 1" = {0, 1}. Specifically, IZ’t = 1 represents
that the task unit ¢ is offloaded to the VEC server of BS. [, é’st =1
indicates that the task unit ¢ is executed the shared offloading
strategy on the VEC server of the BS. I represents that the task
units i is offloaded to the VEC server of RSU. I’;} = 1 indicates
that the task unit ¢ is executed the shared offloading strategy on
the VEC server of the RSU. I} t=1 represents that the task unit
1 is computed locally.

Because each task unit can only have one computation mode
in period #, we have

D' ittt =1 (1)
The local computing time ¢ of task unit 7 can be expressed
as
s
th =, )
Yo
The local execution energy consumption e’ of the task unit i
is given by [35]

ef = WLdicif[Q, (3)

where wy, is a coefficient of chip structure of vehicle.

If the vehicle migrates their tasks to VEC server on the BS or
RSU for execution, we also need to consider the transmission
overhead of the task. It is assumed that the vehicle has a fixed
transmission power. In the case of the V2B communication
mode, the spectrum of the vehicles under the cellular networks
are orthogonal, and the channel of the V2B communication
does not collide with each other. For this reason, according to
Shannon’s formula, the transmission rate between the vehicles
and the BS VEC server is given by

BB
rB = Wlog, (1 + plgé’l) “@

where W is the channel bandwidth. The vehicle uses DSRC
communication in V2R mode. DSRC has K service channels,
which adopt competitive access mode. When the number of users
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is less than K, each channel does not interfere with each other.
When the number of vehicles is greater than K&, channel collision
will occur, and the extra user transmission behavior will cause
interference. The number of other vehicles communicating with
the RSU in the current service area is M. The simultaneous
interference power £ is defined as

el — Yk eh P M > K +1 )
' 0 ,M<K+1

where p is the average interference coefficient generated by ex-
cessive users, usually p = 1 — % When the number of vehicles
exceeds the number of available channels, @R represents the
noise generated by extra vehicles’ communicating with the RSU.
In this case, the transmission rates of each vehicle to the VEC

server of RSU is expressed as
R, R
Pi 9;
> . (6)

o2+ ¢l

If the task ID matches successfully in the VEC server pool, it
could be in shared offloading mode. At this time, only the task
unit ID needs to be transmitted to the VEC server. However,
when the task ID matching is unsuccessful, the complete task
unit needs to be migrated to the VEC server for offloading
computation. In V2B and V2R transmission mode, the time
taken for the complete task unit to be transmitted to the BS
or RSU is expressed as t?’tr and tf’”, respectively. As shown
in the following:

o G LT e S L Ll )

Tik Tik

ri = Wlog, <1 +

where §; is the ID size of task unit 4.
The computation delay of the task unit in the VEC server of
the BS and RSU is expressed as

f’co = g and tf’w = g
B fr

Then, the energy consumption eZand e can be expressed as

t ®)

ef =pP 47" + I'wpe f3 ©)

i 7 %

R R ,Rtr it 2
et =pi" -t + 1 wreifn

(10)

where p? and p; are the transmission energy
consumption to the VEC server. wgc; f3 and wge; f are the
computing energy consumption on the VEC server. wp and wg
are the coefficient of chip structure of BS and RSU VEC server,
respectively.

According to the aforementioned analysis, different task of-
floading modes and task computing locations have different en-
ergy consumption. For task unit ¢, its overall energy consumption

can be expressed as

B,tr R 4Rtr
-t -t

t_B t R t L it B it R
Eir=Iye;” + Lie;" + Iiey + I e + Ije;.

(1)

Due to the limited network transmission capacity, the task
unit needs to wait for a dperiod of time before it is migrated to
the VEC server. Let ¢; ' denotes the waiting time for the task
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unit ¢ to be transmitted to the VEC server. It can be given by

ready _
t," =
i—1 ((If’t(tf’tr + t,]f’co) + If’t(tf’tr + th’CO)) P> 1
k=1 +I£€S,tt’?,tr + Ifétth,tT‘) )
0,0=1
(12)
"% includes the transmission and computation delay of previ-
ous task units. The total duration of each task unit in offloading
execution is expressed as
& (i) = I (max (Y 1200 41 20) L 10 (max {£°Y | 1750

%

FE) I LI T (13)
where t?_’fo represents the time for task unit ¢ — 1 offloaded to

the BS, and tifo represents the time for task unit — 1 offloaded
to the RSU.

The optimal task shared offloading problem take energy con-
sumption, time delay, and cost as the optimization objectives.
Therefore, we define the utility function R;(t) of task unit i,
which include three parts, which are the remaining duration
time of the task unit, the computing energy consumption of the
task unit, and the cost of offloading services. The longer the
remaining time of the task unit, the greater the utility function.
When the computation delay exceeds the maximum delay ¢;™*
of the task unit, there is a timeout penalty. The cost of offloading
services includes the transmission fee from the task unit to
the BS and the computing fee on the VEC server. The RSU
communication is free. The service fee normalized value L; is
defined as (14) shown at the bottom of this page, where vp is
the transmission billing rate of the BS, and v¢ is the computing
billing rate of the VEC server. R;(t) is given in Definition 1.
Definition 1: Utility function R;(t). The utility function is
the normalized weighted sum of the remaining duration time,
the offloading energy consumption, and the offloading service
cost during the offloading process of the task unit ¢. The utility
function is expressed as

Ri(t) = o (S5 (0 = ©(0)) — hqgu(@(3) — 7))
—az- (k1) —ag- (ko)™
s)
where a1, g, and g are the weight coefficients, and oy + a0 +
a3 = 1. k1 and ko are constants close to 1. X; is an arbitrary
constant. u(+)is a step function.
Based on the utility function R;(t), we define the overall
utility value of all task units offloading as a reward function.
Definition 2: Reward function U(t). The reward function is
the overall utility value generated by offloading all task units,
which is used to evaluate the current task unit offloading scheme.
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The reward function is expressed as

U(t) =Y Ri(t).

i€EN

(16)

Each task unit has many different offloading strategies. The
proposed algorithm needs to find the optimal offloading strategy
for the task unit. The definition of task unit offloading strategy
space is given here.

Definition 3: Strategy space. The strategy space of the task
offloading algorithm is the collection of all possible offloading
modes of the task unit ¢ in the period ¢, expressed as

0, = {(I*, I, 10t T8 I e NI € {0,1}},

bs ' r TSy

x € {b,bs,r,rs,l}.

We transform the optimization objective into maximizing the
reward function of the task unit in period ¢. The optimal task
offloading model is formulated as follows:

maxU(t) = > Ri(t)
1L ieN
diln2
Wi 1) (f+0?)
13 < le
d;-1n2
(e W —1> o2
C2:~——571 <pB

B

s.t. C1: (

1 (17)

C3:I)  + I+ I+ I+ 1) =1

C4:I}" = 0,if(s; € IDStackps) U (s; €
IDStackps, [t] —t]| < Aty)

C5 It = 0,if(s; € IDStackrsy) U (s; €
IDStackgsu, |t] —t]] < Aty)

C6: (i) < tpand®(i) < 7

where C1 and C2 represent the lowest transmission power of
vehicles for RSU and BS, respectively. C3 represents each task
unit makes a unique offloading decision at the period because
of its indivisibility. C4 represents that if the task unit i matches
failed on VEC server of BS, it cannot use the shared offloading
mode on the BS server. C5 represents that if the task unit ¢
matches failed on VEC server of RSU, it cannot use the shared
offloading mode on the RSU server. C6 represents that the
total duration of the offloading execution should be within the
receiving time of the VEC server service of the BS and RSU.

For the tenability of C1 and C2, we give the following lemmas.

Lemma 1: If the task unit is offloaded to the BS for ex-
ecution, the transmission power PP of the vehicle satisfies

d;n2

T g
e <ol

Proof: The vehicle needs to maintain sufficient transmitting
power to successfully transmit the task to the BS for execution.
The transmission time of task unit ¢ shall meet the maximum

L=

(I + Lo - (8 + I - dy) + (I + I+ T 4 Tobyoe - ¢

UB'((Si—I—I;’t'di)—f—UC'Ci

(14)
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deadline of the task, which is shown as

di
B < (18)

Substitute formula (4) into the aforementioned formula, there
is
d;
Wlog, (1 + Lig?)

< e (19)

Then, using the base changing formula, we have the following:

d' lIl (1 + ‘pigf)
<
W gmax = In2

(20)

By using logarithmic relation and shifting terms, we can
derive

21

Keep the power p? on the right of the inequality, we have
d;n2
(e W,t;nax _

Lemma 1 is proved.

Similarly, we can prove Lemma 2, and the proof process will
not be repeated.

Lemma 2: If the task unit is offloaded to the RSU for
execution, the transmission power pzR of the vehicle satisfies

d;n2
(ew'qm - 1> (&f + o?)

gF

(22)

<pR.

— K2

V. DRL-BASED SOLUTION

In this section, we first give the initialization method of the
optimization model, and then give the DRL offloading algorithm
based on optimization model.

A. Optimization Model Initialization

Before model optimization, the task unit offloading mode
needs to be initialized. The initialization process follows the
following principles. When the local computing power cannot
meet the maximum deadline requirement of the task unit, i.e.,
th > M | the offloading mode is selected according to the
size of the task unit and the maximum deadline in the task
unit. If the task unit is only offloaded to the VEC server of
the BS through V2B communication, the computation delay
t5:°° and the transmission delay t"'" of the task unit satisfy the

4 i
. . . .. .Bitr B :
maximum deadline ¢"*of task unit, i.e., ¢; """ 4 ¢; % < ¢

and t1" 4 ¢79°° > M and the task unit does not match suc-
cessfully on the BS server, the offload mode indicator initializes
I Z’t = 1. If the task unit matches successfully on the BS server,
the offloading strategy indicator initializes [ Z’: = 1. Similarly,

if the task unit is offloaded to the VEC server of the RSU

2095

Algorithm 1: Strategy Initialization.

1. Initialization

2. For each task unit i € N Do {
3. Iflocal computing power is enough and t& < ¢ma@;
4. The task unit will be computed in local and Z - 1;
5. ElseIft]"'" 47 < 7% and
tf%,tr + th,co > t;mal;
6. If Task ID is successfully matched in BS;
7. Task unit is in shared offloading mode, and
=1
8. Else Task unit is computed in VEC server of BS
and [ Z’t =1;
9.  ElseIft""" + % > 7% and
A S
10. If Task ID is successfully matched in RSU;
11. Task unit is in shared offloading mode, and
Li=1
12. Else Task unit is computed in VEC server of
RSU and It = 1;
13. Else Select an offloading strategy randomly; }
14. End

through V2R communication, the computation delay ¢/°° and

the transmission delay tf)” " of the task unit satisfy the maximum
deadline ¢Mof the task unit, ie., £/ + ¢/ < ™ and
the task unit does not match successfully on the RSU server,
the offload mode indicator initializes /¥ = 1. In this case, if
the task unit matches successfully, the offloading mode indicator
initializes %! = 1. If the local computation of the vehicle can
meet the deadline ¢ of the task unit, i.e., tiL O <X or the
network of BS and RSU is unavailable, the local computing
mode will be the only choice, and the offloading mode indicator
initializes [ ; '* — 1. On the basis of the aforementioned analysis,
the offloading optimization model initialization process is shown

in Algorithm 1.

B. DRL-Based Task Offloading Solution

By maximizing the optimization objective of the model (17),
the optimal offloading strategy 7; € 1I; of the task unit in period
t can be obtained. Then, the overall optimal offloading strategy
P* in the task offloading process can be expressed as

t—1
E(X Vo)
(23)
where -y is discount factor and satisfies 0 < v < 1. T'is the time
period set. E(+) is mathematical expectation. -y is used to indicate
the impact of future reward on current offloading mode.

The selection of the overall optimal offloading strategy P*
depends on the current network channel, the historical caching
of the task unit in the VEC server, the computing power of the
VEC server, and the reward function U (t). Therefore, we need
to define the state space and value function for DRL algorithm.

P =arg max
pe{(m1,ma,...,mr)|m €1 LT}
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Fig. 4.

Process of DRL.

Definition 4: The state space of the DRL-based task offload-
ing method is S; = [r2, 2, i, fr, fr, =Y, 1D,

IDStCLCkBs,[DStaCkRSU}. IDStackps and
IDStackrsy are ID pools of BS server and RSU server,
respectively. I D; indicates the complete ID of task unit 7.

Definition 5: Value function. The task offloading process is
equivalent to MDP, so the value function is defined as long-term
expectation of task offloading reward function based on state
space S; and task unit offloading strategy 7,

Q(S;,m) = <Z’7t 1U >

teT

(24)

Fig. 4 shows the process of our DRL algorithm in VEC
task offloading. The agent-based DRL determines the optimal
offloading strategy according to the current state and reward.
The algorithm is deployed on the VEC server side. We adopt
the double DQN method in the algorithm. Double DQN in-
cludes two convolution neural networks, namely target net and
evaluation net. The evaluation net is used to decide strategy
according to Q(.St, 7, 0;). The target net is used to evaluate the
strategy decided by evaluation net according to Q( Sy, m¢, 0;—1).
Loss function is used to update the parameters 6; of evaluation
net. This makes the difference between the target network and
the evaluation network gradually decreases. We use the random
gradient descent of loss function to update the parameters, so
that the network gradually converges. Meanwhile, the value of
loss function is converged to the lowest value through iteration,
and the generalization of the algorithm is improved. The buffer is
used to temporarily store the state parameters, delay the update
of the neural network, and cut off the correlation of the network
parameters, which is expressed as buffer = [S;, 7y, U(?), Sy+11.

The offloading strategy adopted by each task in the period #
depends on the current and future states of the VEC system.
Therefore, we formulate (23) as a Markov decision method.
Meanwhile, the algorithm finds the optimal task offloading
strategy of each task unit in the time series by updating the
value function. The value function update process uses the time
difference method. According to Definition 5, we can get

Q(St,m) = E(U(t) + vQ(St+1,Te41)) - (25)
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Therefore, the optimal value of the value function can be
expressed as

O (Si,m) = E (U(t) +max Q*(St+1,7ft+1)) . @6

According to Q-learning algorithm, the update process of the
value function is expressed as follows:

Q(S¢,m) « Q(S¢, )
+5 (v +

where [3 is learning rate. Optimal value of the value function can
be obtained by maximizing the function with parameter ~.

Double DQN method is used for the aforementioned formula.
Then, the optimal strategy P* can be expressed as

Q(Sta Tty et)

ymax Q" (St+1, 7Tt+1)

Tt4+1

QS 7Tt>> 27)

P* = ar max 28
gPE{(ﬂ'l7Tr27---77TT)‘7ft€Hmt€T} (28)

The target net needs to compute @y, value, which can be
expressed as

Qur = U(t) + 'YQ(StJrla arg maXQ*(St+1»7Tt+1a 9t)7 9t71)~

Tt41
(29)
Let the loss function Loss(6;) be the difference between
the target network and the evaluation network, which can be
expressed as

= B[Q(St, 7, 0;) — Qttar]2~

We use the gradient descent method to correct §;. The gradient
Vo, Loss(6;) is obtained by

Loss(6;) (30)

VQtLOSS(et)Z QE[VQtQ(St, T, Gt)(Q(St, T, et) — Qfar)]
€29
Then, update 6, according to the following formula:
0, < 6, — wVg,Loss(0;) (32)

where w is the scalar- size.

Follow the aforementioned procedure, the strategies in the
strategy space are selected according to the state space, so that
the algorithm is optimized toward the optimization objective.
In this way, each task unit has an optimal offloading strategy,
which consumes less energy, less delay, and less cost. That is
when the task unit satisfies the multiple offloading strategies, the
proposed offloading algorithm will guide it to find the strategy
with the least energy and delay consumption.

VI. NUMERICAL RESULTS

To illustrate the performance of the proposed shared offload-
ing algorithm, we consider an area of 120 km?. Each cell has
1 BS and 0-3 RSUs. Each cell has 1-3 vehicles performing
computing tasks in each period. Other evaluation parameters
are listed in Table II.

We compared the proposed DRL-based shared offloading
algorithm with other algorithms, including Q-learning-based
offloading, greedy offloading, unshared offloading, offloading
only, and local only. Greedy offloading algorithm executes the
task unit locally first, and offloading is only carried out when the
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TABLE II
EXPERIMENT PARAMETERS

VARIABLE DESCRIPTION
The frequency corresponding to the CPU
cycle of the VEC server in BS f, 100GHZ
The frequency corresponding to the CPU
cycle of the VEC server in RSU f, 20GHZ
The frequency corresponding to the CPU
cycle of the vehicle user f, 0.5GHZ
Background noise o” -100dBm

Speed of the vehicle v 20 meter/sec

The maximum delay of task unit #"“ 10ms
The size of each task d, 5-10 bites
Step size @ 0.01
Activation function Relu
Buffer size 500
Batch 32
Discount factor y 0.9
Number of rounds episode 200
The coverage length of the RSU 500m
The coverage length of the BS 1000m

Algorithm 2: DRL for Task Offloading.
1. Initialization by Algorithm I;
2. While (Loss(0y)>n)
3. {Fort=1,2,...,T Do
{Execute strategy m; and compute reward U(?);
Update Sy4+14-S4;
Store the experience (St, 7, U(t), Si41) into the
experience replay buffer;
7. Get a batch of M samples (S;, 7y, U(t), S¢11) from
the replay memory;
8. Compute the Q-value by
Q"(St,m) = E(U(t) + v max Q" (Se41, me41));
9. Update the main deep Q-network by minimizing
Loss(6:) = E[Q(Sy,m1,601) — Q)™
10. Update the target deep Q-network parameters with
0, < 0, — wVg,Loss(0,);

o s

11. Update the: choose strategy 7; with maximum Q
function;}
12. Return P* by
Pt =

arg max E e tU(1))s)

pe{(m1,m2,..., w7 ) |me €Ly t€T}

local execution cannot meet the deadline. Unshared offloading
is DRL-based offloading method, but without computing result
sharing mechanism. Offloading only method offload all task
units to VEC server. Local only method executes all task units
on vehicular computing platform.

In the shared offloading algorithm, the learning rate of the
neural network model is 0.1. The exploration degree is 0.9,
which means that 90% of probability choose the best strategy,
and 10% choose random strategy, allowing the algorithm to
explore all the possibilities in the environment. There are two
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Fig. 6. Service fee of different algorithms.

unrelated networks in the shared offloading algorithm, each with
two layers of neural networks. Each layer is a fully connected
layer of 20 neurons and uses the Relu activation function. When
the network selects a strategy, the environment will feed back
the energy consumption and the remaining delay of the strategy
to the agent, and then update the network in turn. The buffer size
is 500 and the batch size is 32. In Q-learning, the learning rate is
0.01, and the discount coefficient is 0.9. The proposed algorithm
and Q-learning both have 3000 episodes.

Fig. 5 shows that with the accumulation of period, the reward
of shared offloading algorithm gradually reaches the maximum,
and finally the reward value is obviously higher than that based
on Q-learning and greedy algorithm. The nonintelligence of
the greedy algorithm makes the processing of time delay and
energy consumption poor in each period, which is a penalty
for overtime. The shared offloading algorithm calls a deep
neural network, which can more intelligently consider the task
offloading strategy and improve the overall energy benefits of
the system.

Fig. 6 shows the service charges under different strategies.
Because the local computing strategy does not consume the
offloading cost of the BS, the service fee is zero. However,
a large number of task units fail to execute due to timeout.
The service fee for offloading all tasks to the VEC server is
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the highest. Greedy offloading algorithm aims to complete the
task calculation within the time limit and does not consider
the service fee generated during the offloading process, so the
service fee is relatively high. The service fee of our algorithm is
lower than that of other algorithms except local only algorithm,
because the shared offloading process only generates the service
fee of transmission and does not generate the service fee of
computation.

Fig. 7 shows the results of the average residual time of task
units in each algorithm. After 3000 episodes, the residual time
of task units in our algorithm is obviously more than other algo-
rithm. This is because shared offloading mechanism effectively
reduce the computing time and transmission time of task units.
Due to limited computing power, local only algorithm has least
residual time. Offloading only algorithm needs to migrate all task
to VEC server, this will cause network congestion, and further
reduce the remaining time of task unit. Q-learning can make a
comprehensive decision on task offloading, and its performance
is close to our algorithm.

Fig. 8 shows the comparison of the energy consumption of
each algorithm. After 3000 episodes, the energy consumption
generated by the proposed algorithm in this article is better than
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Fig. 10. Relationship between the value function and the number of training
steps.

the comparison algorithms. This is because the shared offloading
algorithm reduces the amount of data transmission and task
computation. Since there is no data transmission in the local
only computing mode, the structural characteristics of its local
CPU Ilead to high energy consumption when computing task
units. The offloading only algorithm requires a large number
of task transmission, so the energy consumption is relatively
high. Q-learning and unshared offloading algorithms take energy
consumption as one of the optimization objectives, and also have
relatively low energy consumption.

Fig. 9 shows that the reward value obtained by our algorithm
is significantly better than other algorithms. This shows that
our algorithm has made significant improvement in the compre-
hensive optimization of energy consumption, delay, and service
cost. The reward value of Q-learning and unshared offloading
algorithms are second only to that of our algorithm. Due to the
learning mechanism, the reward values of the three algorithms
have a gradual increase process. Local only and offloading only
algorithms have the lowest reward value due to the lack of
flexible decision-making mechanism.

Fig. 10 shows the convergence of our algorithm. It is not
difficult to see from the figure that after 400 episodes of iterative
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training, the value function of the algorithm in this article tends
to be stable. This is because the algorithm adopts the gradient
descent method for the loss function, which effectively improves
the convergence performance. In addition, the rapid convergence
also improves the adaptability of the algorithm.

VII. CONCLUSION

In this article, we have proposed a task offloading algorithm
for 5G supported VEC by integrating DRL. To minimize the of-
floading overhead of similar tasks, we propose a shared offload-
ing strategy for VEC. In the strategy, similar computing tasks
coming from different vehicles can share the computing results
of former task submitted to VEC server. We establish the overall
utility function of integrating computing energy, transmission
energy, task remaining time, and service cost, and establish
the objective function and a task offloading optimization model
on this basis. We also propose an optimization scheme with
joint task offloading computing mode decision and VEC server
selectionin a DRL approach. The numerical results illustrate that
the DRL-inspired task shared offloading scheme significantly
outperforms the comparison schemes.
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