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Abstract—Motivated by the development of single image super-
resolution (SR) reconstruction in computer version, classic SR
networks have been widely applied to the channel estimation of
wireless communication system. To capture the spatial correla-
tions in the reflection element-domain of reconfigurable intelli-
gent surface (RIS), we propose a multi-scale supervised learning-
based Laplacian pyramid wide residual network (LapWRes) to
achieve the progressive reconstruction of cascaded channel in a
coarse-to-fine fashion. The LapWRes can be divided vertically
into feature extraction branch (FEB) and channel reconstruction
branch (CRB), while it can also be viewed horizontally as multiple
channel reconstruction modules (RMs) at different scales. In the
FEB, the wide activation residual blocks are stacked to extract
the high-frequency information of cascaded channel. In the CRB,
the high-frequency and low-frequency information of cascaded
channel is fused by utilizing the residual learning. Simulation
results show that the LapWRes can achieve better estimation
accuracy than other channel estimation schemes and faster
convergence than existing SR network-based channel estimation
models.

I. INTRODUCTION

Considering lots of communication bandwidth available at
high frequency, millimeter wave (mmWave) is regard as the
promising communication frequency for the future wireless
communication system [1]. However, the significant path loss
of high-frequency electromagnetic waves limits the coverage
of mmWave communication. The intuitive solutions are to
deploy denser base stations or to integrate more antennas
into communications equipment, which will bring expensive
hardware cost and much energy consumption. Reconfigurable
intelligent surface (RIS) is a metasurface composed of sub-
wavelength units, whose electromagnetic response of each unit
can be tunable by adjusting the size or spatial arrangement of
units. By utilizing the unique electromagnetic properties, RIS
provide a possibility to enhance mmWave communication with
low cost and energy [2]. However, high-dimensional channel
estimation is the key challenge for RIS with a large of passive
reflection elements [3].

To reduce pilot overhead of high-dimensional channel es-
timation for RIS-aided communication system, many works
have provided various design ideas, e.g., the semi-passive
channel estimation by equipping with few radio frequency
chains in RIS [4], the compressed sensing-based channel
estimation by exploiting the sparsity of RIS channel [5] and
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the two-timescale channel estimation by utilizing the channel
vary characteristic [6]. Moreover, deep learning (DL) has been
proved feasible to improve the accuracy of channel estimation
and reduce pilot overhead by learning the inherent features
of massive communication data [7]-[9]. In the DL-based
channel estimation scheme, single image super-resolution (SR)
reconstruction technologies have been widely used. The theo-
retical foundation of the SR network-based channel estimation
scheme is the correlations of channel matrix, e.g., the correla-
tions of time-frequency domain in orthogonal frequency divi-
sion multiplexing (OFDM) systems. In [10], super-resolution
convolutional neural network (SRCNN) was applied to recover
the complete time-frequency channel form partial channel of
pilot subcarriers. However, the reconstruction performance of
SRCNN was limited due to the simple network architecture.
In [11], enhanced SR network (EDSR) was used to further
improve the channel estimation accuracy by introducing the
residual learning.

Since the metamaterial units of RIS are generally integrated
closely, the channel at the neighboring units are highly corre-
lated in spatial correlations domain. Hence, the design ideas in
[10], [11] have been extend to the RIS-aided communication
system. In [12], the low-dimensional cascaded channel matrix
was obtained by opening partial RIS elements firstly, and then
SRCNN was applied to recover the high-dimensional cascaded
channel from the low-dimensional cascaded channel matrix.
The work of [13] considered the part of cascaded channel
estimation based on EDSR, where some active elements were
equipped with RIS to acquire the initial channel information.
In the above works, the channel extrapolation was realized in
one upsampling step, e.g., the pre-upsampling in the input
layer of SRCNN [10], [12] or the post-upsampling in the
output layer of EDSR [11], [13], which leads to reconstruction
difficulties of channel will increase for large upscale factor. In
the conventional channel estimation schemes of RIS commu-
nication system, some dimension reduced channel estimation
ideas have been proposed by exploiting the spatial correlations,
e.g., element group [14], and similar ideas can be found in
SR, e.g., Laplacian pyramid network [15], which motivated us
to progressive reconstruct the cascaded channel matrix from
small scale to large scale.

In this paper, we propose a multi-scale supervised learning-
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Fig. 1. The three-dimensional RIS-aided mmWave communication environ-
ment with random scattering elements.

based cascaded channel estimation scheme in RIS-aided com-
munication system, where we design the Laplacian pyramid
wide residual network (LapWRes) to progressive reconstruct
the cascaded channel in a coarse-to-fine fashion, instead of
one step reconstruction. The feature map is composed of high
frequency and low-frequency components in neural network.
With the increase of network layers, the representation of
network will contain more high-frequency information. Hence,
we introduce residual learning to fuse the high-frequency and
low-frequency features by design two branches, i.e., feature
extraction branch (FEB) and channel reconstruction branch
(CRB). Meanwhile, wide activation residual blocks (WARBs)
are used in the interior structure of FEB to improve the feature
extraction ability of LapWRes [16].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS assisted uplink mmWave communication
system in Fig. 1., where a single-antenna user equipment
(UE) simultaneously communicates the base station (BS) with
M = M; x My uniform planar array (UPA) uniform planar
array antennas via the RIS with N = N; X Ny reflection
elements. Let G and h represent the RIS-BS channel and the
UE-RIS channel, respectively. Following the channel modeling
in [17], the clustered statistical MIMO channel model is
used to capture the dynamic variations of the environmental
objects, e.g., a large number of randomly distributed scattering
elements between the terminals and the RIS. The RIS-BS
channel G = Gyros + GLos can be represented as
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where C and S denote the total number of clusters and scatters
in cluster ¢ between BS and RIS for non-line of sight (NLOS)

component, respectively. v = is a normalization

1
ey Se_
factor in the clustered channel model. ., ~ CN(0,1) is
the propagation path gain of the (c, s)-th scatter. G, (057) =

2(2q+1)cos®? (A7) denotes the RIS elements pattern for the
(¢, s)-th scatter, where ¢ determines the gain of the element
[18]. Lf represents the path loss for the (¢, s)-th scatter [19]
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where A, n, b and fy stand for the carrier wavelength,
path loss exponent, model parameter and reference frequency,
respectively. d. s represents the ray path length of the (c, s)-th
scatter. X, ~ CN(0,0,2) is a shadow factor.

gb?g (02;) and qﬁgg (05;) denote the azimuth (elevation)
angle of arrival at the BS, and the azimuth (elevation) angle
of departure at the RIS for the (c, s)-th scatter, respectively.
The UPA array response a (¢, #) can be represented as

a (d)’ 6) _ |:1 . ej27rd(zsin9+y singcos0)/X
ej27rd((N171)sin0+(N271)sin¢cos 0)/X
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where 0 <z < N; —1and 0 < y < Ny — 1. d denotes the
antenna spacing.
The UE-RIS channel h can be represented as
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where C' and S represent the total number of clusters and
scatters per cluster between the RIS and the UE, respectively.
v = %g Bes ~ CN(0,1). G (07:F) represents the

c=1"+¢
RIS element gain, Lg;”‘ denotes the path loss. ¢g§ O7Fy is
the azimuth (elevation) angle at the RIS. '

Let RIS reflecting vector © = [e/% ef%2 ... eIN]T ¢
CN, where 0;(i = 1,2,--- , N) denotes the phase shift at i-th
RIS element. In the g-th (¢ = 1,2, -, Q) pilot transmission
slots, the received pilot signal ¥, can be represented as

Y, = Gdiag(0,)hs, + w, = Gdiag(h)O,s, + wy, (5)

where w, ~ CN(0, on 21 ) stands for Gaussian noise and let
H = Gdiag(h) € CM*Y denotes as the cascaded channel.

Since the performance gain of passive RIS is superior to
traditional active relay technology only when there are a
large number of reflection elements on RIS, the cascaded
channel H is high-dimensional. Due to the constraint of full-
rank condition for existing classic estimator, e.g., least square
(LS) estimator, the required minimum pilot overhead is IV,
which causes intractable training overhead for the RIS-aided
communication system.
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Fig. 2. The proposed Laplacian pyramid wide residual network (LapWRes) architecture.

III. PROPOSED METHOD
A. Dataset Construction

By exploiting the spatial correlations, we extend the
partial cascaded channel to complete cascaded -chan-
nel matrix by designing the SR network. In the first
phase of channel estimation we select the P =
{1,k+1,--- ,(P—-1) x k+1}, gp | =L +1]) RIS el-
ements with the interval £ = (0 < 8§ < logyN) as
the subset of whole RIS elements, and then estimate the
partial cascaded channel by controlling the reflection vector
of subset elements. To reduce the computing complexity
of the first phase, the simple ON/OFF reflection protocol-
based LS algorithm is used to obtain the partial channel
HP e CMxP, Suppose only p, (1 < p < P)-th elements is
turned on at a time slot, the received signal at BS can be
represented as y, = HJ's,, where H)' represents the p-th
column of cascaded channel H”. Then the estimated channel
H73 = Yp$, ~1 by using LS algorithm. We serially turn on each
elements in P, and adopt the same method to obtain each
column of H” i, H? = |[HP HT,. .. 7}AI71§}.

Let HP ¢ RM*XPX2 a5 the input data of network, where
the real parts and imaginary parts of complex channel ma-
trix are separated, ie, H. | = Re(H”) and H?, , =
Im(H”),(1 < m < M). We design the label group H =
(Hy,H,, - ,Hg) to achieve the progressive reconstruction
of cascaded channel, where Hg represents the complete cas-
caded channel matrix and H, € RM*2"Px2(1 < 5 < 9).

B. Laplacian Pyramid Networks

Fig. 2. shows the proposed Laplacian pyramid wide residual
network (LapWRes) architecture with S RMs, where we stage
by stage upscale the lower-dimensional channel matrix by
a scale of 2 in the reflection element-domain of RIS. Each
RM can be divided into two branches: FEB and CRB, which
imitate the Laplacian pyramid in image scaling.

1) Laplacian pyramid: Laplacian pyramid is the improve-
ment of Gauss pyramid by introducing the residual coeffi-
cients. In the Gauss pyramid, the original resolution image

at the bottom of pyramid is sequentially downsampled, which
forms a set of images arranged from top to bottom in the
shape of a pyramid according to the size of image resolution.
However, this sampling operation will lose high-frequency
information of images. Let G(I) = [lo, I1,...,Is] denotes a
Gauss pyramid with S levels, where I, (0 < s < .S) denotes
the s-th level image of pyramid. The s-th level of Laplacian
pyramid can be represented as

hs = LS(I) = QS(I) - u(gs+1(1)) =1Is— U(IS+1)7 (6)

where u (I541) denotes the upsampling image of I,., and
residual coefficient h, contains high-frequency information.

If we regard the cascaded channel matrix as the image, Ig =
H?” and I, = Hg in the channel estimation. The s-th level
cascaded channel matrix can be represented as

Hy=u (I:Is-i-l) + hsa (7

According to the structure of Laplacian pyramid, we design
the LapWRes to realize the cascaded channel estimation,
where the upsampling operator « (.) and the Laplacian co-
efficients hg is designed by neural network.

2) FEB: In the FEB of s-th RM, we first use a convolu-
tional block (CB), composed of convolutional layer and Leaky
Rectified Linear Unit (LeakyReLLU) activation functional layer,
to adjust the channels of feature maps. Next, W WARBs are
stacked to extract the more representative features. Different
from the residual blocks (RBs) in EDSR, we adopt WARBSs to
improve the transmission of information flow in the LapWRes
[16]. The non-linear activation function can make neural net-
work obtain the non-linear mapping ability, while non-linear
transform will loss the partial original information of input
data. Since the low-level features of input data is important for
the SR tasks, we use the CB with more convolutional kernel
to increase the channels of feature maps before the activation
in the WDSR, which expands the low-level features and still
keeps the non-linearity of LapWRes.

Since batch normalization (BN) will change the original
data distribution, BN is not appropriate for the SR tasks, while
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the training process without normalization layer is unstable
for deep network. In the LapWRes, we adopt weight normal-
ization (WN) to reparameterize the weight vector of network
instead of normalizing the mini-batch data of each layer [20].
Compared with BN, the performance of WN is not related
with the batch size and data, and the memory and computation
overhead is lower. Moreover, the SR-based channel estimation
is sensitive to the learning rate Ir, e.g., 7 is set a small value
Ir =103 in [11]. The training loss of network without WN
layer will explode for a larger Ir, while the small learning
rate is easy to lead to overfitting. The WN can provide a
wider range of Ir in the training, which improve the estimation
accuracy in the test phase. We use an upsampling block (UB)
to scale the feature map to desired dimension of channel
matrix, e.g., H” € RM*Px2 _ H; ¢ RMX2rx2 ip the
first RM. In the UB, we adopt nearest interpolation and
convolutional layer to increase the size of feature map, which
can avoid the check artifacts in the upsampling.

3) CRB: A feature map I composed of high-frequency
feature Iy and low-frequency feature Iy, thatis [ = Iy +Iy.
When we use neural network to extract the feature of data, the
feature map will represent more high-frequency information
for deeper network layer, while I is also important for
the reconstruction of 7. Consequently, the CRB is design
to transfer the low-frequency information from original low-
dimensional data, which is equal to the u (.) in the Laplacian
pyramid. In the CRB of s-th RB, the lower-dimensional
channel matrix is directly upscale to X, by the UB, where
the filters of UB are set to 2. Meanwhile, the output of FEB
reduces the channels of feature maps to 2 channels R, by CB
with 2 filters, which be denoted transition block (TB) in the
Fig. 2. Hence, the output of s-th RM H,; = X + R;.

C. Multi-Scale Supervised Learning

In each RM, we adopt multi-scale supervised learning to
generate the cascaded channel matrix with different scale. For
the SR and channel estimation task, L; loss function can
obtain better performance compared with L, loss function
[11], but L; loss is not robust in the zero value. We adopted
Charbonnier loss function to optimize the whole network [14],
which is a differentiable variant of L; loss.

L(H,H)=
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where p(x) = Va2 + &2 is the Charbonnier penalty function
and ¢ is a regularization parameter. B is the number of training
sample in each batch.

D. Parameters and Computational Complexity Analysis

Let the number and size of the filter is w; and k1 x kq for the
first convolutional layer in the RB, while the number and size
of filter is wo and ks X ko for the second convolutional layer,

respectively. In the vanilla RB of EDSR, w; = wsy and k =
k1 = ko, so the parameters of a RB are 2w;2k?. In the WARB,
we introduce an expansion factor r before activation layer, i.e.,
W1 = riva, so the parameters of a WARB are 2ri3k2. Since
it proves nothing except that more parameters lead to better
performance, we keep the parameters is same for two RBs,
i.e., 2w;2k? = 2rwsk?, where the computational complexity
is a constant scaling of parameters for the same input size.
Consequently, Wy should be slimmed for the same parameters
and computational complexity of two RBs, i.e., Wy = %
The time complexity of FEB, CRB and TB in the s-th RM is
(0] (25Mk2p(Ww1w2)), (0] (25+1Mk2p) and O (25Mk2pw3).
Cons%quently, the total time complexity of LapWRes is
0] (E 25 M k?p(Wwyws + w3 + 2) |. The space complexity

s=1
is composed of parameters and computed feature map, which

is O (Zi k2(2Wwiws) + 257t Mp(W (wy + wg)))>

IV. NUMERICAL RESULTS

A. Simulation Setting

In our simulation, M =8 x8 N =16x16,k=8,5=3
and ¢ = 10~%. The Poisson and uniform distribution are used
to model the distribution of cluster C' ~ max{P(\,),1} and
scatters of each cluster S, ~ U[1,30] [16], respectively. The
mmWave communication frequency is set to 28 GHz and the
parameter A, = 1.8 [20]. We consider the path loss model in
Indoor Hotspot (InH) Indoor Office scenario, that is n = 3.19,
b =0.06, 0 = 8.29 dB and fy = 24.2 GHz for InH Office-
NLOS, while n = 1.73, b = 0.06 and ¢ = 3.02 dB for InH
Office-LOS [18]. We generate 30000 paired channel samples
to construct the dataset.

We train the networks for 100 epochs using the cosine
learning rate decay with an initial learning rate 5 x 103
[21], and the networks are optimized using adaptive mo-
ment estimation optimizer in the training process [22]. The
regularization parameter ¢ = 107%. The normalized mean
squared error (NMSE) is used as the performance metric, i.e.,

PN 2
NMSE = E[||H — H|| /|| H||%]. Let r denotes the ratio of the
number of the activated RIS elements to the total elements in
the LS estimation, i.e., r = £ = %, where P pilots is used

N
for LS-ON/OFF algorithm.

B. Result and Analysis

We compared the proposed scheme with traditional algo-
rithms, e.g., LS [23] and OMP [4], and other SR networks,
e.g., SRCNN [12], EDSR [11] and LapSRN [14]. In the
SRCNN and EDSR, the UB is design at the input and output
layer of network, respectively. SRCNNI1 is an improvement on
vanilla SRCNN by adjusting the upsampling factors, where
the single-step up-sampling in the SRCNN is modified to
the asymptotic sampling with 2 times factor. For the fair
comparison of different networks, the number of RBs is the
same for EDSR and LapWRes.
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Fig. 4. Convergence performance for different network models.

Fig. 3. shows the NMSE performance of LapWRes with
less pilot overhead is superior to traditional LS and OMP algo-
rithm. In the LS estimator and OMP algorithm, the required pi-
lot overhead is set to P.s = N and Pomp = N/2, respectively,
while the required pilot overhead is P = N/25 = N/8 for
SR-based channel estimation networks. The SR network-based
channel estimation performance is related with the method
and location of upsampling. In the SRCNN, the single-step
upsampling, ie.,, HP ¢ RM*Px2 _ Hg ¢ RM*Nx2
will introduce serve interpolation errors in the input layer,
which results in limited recovery effect of the subsequent
network, and the high-dimensional input also increases the
computational complexity of the network. SRCNN1 adopt the
UB with a certain up-sampling factor to progressive upscale
to the complete dimension of M x N x 2, which reduces
the interpolation error of input data to a certain extent. In the
EDSR, a large number of RBs are stacked before upsampling,
and then the extracted efficient features are used to the last
reconstruction. This post-upsampling architecture can reduce
the computational complexity and improve the reconstruction
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Fig. 5. NMSE performance for different pilot overhead.
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Fig. 6. Visualization of S RMs’ output when SNR=10dB. The three channel
matrix in the first row represent predicted real parts of cascaded channel
matrix, while the second row represent the corresponding label in different
scales.

performance. However, the post-upsampling layer is difficult
to recover the high-resolution cascaded channel matrix di-
rectly when the upsampling factor is large. In the proposed
LapWRes, we further optimize the location of up-sampling,
where the UB is embedded in the network from low dimension
to high dimension to realize progressive reconstruction of
cascaded channel matrix. The existing LapSRN simply stack
convolutional layer in the FEB, while we introduce WARBs
into the FEB to increase the network capacity in the LapWRes.

Fig. 4. shows the convergence of different network models
in the training process, where the average Charbonnier loss
between generated cascaded channel matrix and ground truth
is used as the measurement. Since the residual learning can
avoid the gradient disappearance and improve the transmission
of information flow [24], the EDSR can obtain faster conver-
gence than vanilla LapSRN by stacking a number of RBs. In
the proposed LapWRes, we merge the WARBs and multi-scale
supervised learning to accelerate the network convergence, so
the convergence level of LapWRes is superior to other SR
networks.
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Fig. 5. shows the NMSE performance of LapWRes under
different r. The baseline LapWRes composes of 3 RMs and
the upscale factor of each RM is 2, which matches r = é. If
r < é, we increase the UBs in the first RM, e.g., adding 1
UB when r = %6. Conversely, we delete partial RMs to match
larger r, e.g., deleting 1 UB when r = i. With the decrease
of r, the required upsampling dimension will be larger, so the
reconstruction difficult will be increased. However, LapWRes
can achieve satisfactory channel estimation accuracy even with
little pilot overhead, e.g., p = Nr = 8. In Fig. 6., we visualize
the output channel matrix of each RM in LapWRes, which
shows each RM can learning the data distribution of channel
in different scales.

V. CONCLUSION

In this paper, we leverage the SR-based channel extrap-
olation idea to realize the cascaded channel reconstruction.
Different with the one-step reconstruction used in previous
works, we propose a progressive reconstruction strategy by
utilizing the multi-scale supervised learning. The proposed
LapWRes adopt dual branch architecture to extract the high
frequency and low frequency information of cascaded channel
matrix, respectively, and then the residual learning is used to
realize information fusion. Numerical results show that the
proposed channel estimation model with limited pilot overhead
outperforms other estimation schemes. In the future works,
we will extend the proposed model to higher-dimensional
channel estimation scenarios, e.g., cooperative communication
of multiple RISs.
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