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Abstract—A joint cascaded channel estimation framework is
proposed for simultaneously transmitting and reflecting recon-
figurable intelligent surfaces (STAR-RIS) systems with hardware
imperfection, in which practical the hybrid-field electromagnetic
wave radiation with spatial non-stationarity is investigated. By
exploiting the cascaded channel correlations in user domain and
STAR-RIS element domain, we propose a multi-task network
(MTN) with multi-expert branches to simultaneously reconstruct
the high-dimensional transmitting and reflecting channels from
the observed mixture channel with noise. In the proposed
MTN architecture, a learnable shrinkage module is exploited to
constrict the communication noise, and self-attention mechanism-
based Transformer layers are utilized to extract the non-local
feature of the non-stationary cascaded channel. Numerical re-
sults show that the proposed MTN achieves superior channel
estimation accuracy with less training overhead compared with
existing state-of-the-art benchmarks, in terms of required pilots,
computations, and network parameters.

I. INTRODUCTION

Metasurface-based communication paradigm has been re-
garded as a promising multiple input multiple output (MIMO)
candidate to construct smart radio environments (SREs) in
the sixth-generation wireless networks [1], i.e., reconfigurable
intelligent surface (RIS) enabled extremely large-scale antenna
array (ELAA) communications. The typical reflection-only
RISs only reflect the incident signal to desired user equipments
at the same side (referred to as UE𝑟 ), which only forms
a half-space SRE. To break the limitation of reflection-only
RISs and achieve the full-space SREs, the novel concept of
simultaneously transmitting and reflecting RISs (STAR-RISs)
has attracted increasing attention [2]. The signal imping on the
STAR-RIS is divided into two parts with the law of energy
conservation. One part electromagnetic wave is reflected to the
UE𝑟 at the same side as the incident wave, while the other part
is transmitted to the users at the opposite side (referred to as
UE𝑡 ). The dual functionality of STAR-RISs provides greater
potentiality to extend the wireless signal coverage [2], [3].

The accurate channel estimation is vital to the RIS beam-
forming optimization, while it is also a crucial challenge due
to the high-dimensionality caused by extensive passive RIS
elements. In STAR-RIS systems, the channel estimation design
is related to the dedicated operating protocol of STAR-RIS [4],
i.e., time switching (TS) and energy splitting (ES) protocols.
In the TS protocol, all elements of STAR-RIS are switched

periodically between the transmitting and reflecting mode in
orthogonal time slots, and hence the channel estimation in
STAR-RIS systems is similar to that in reflecting-only RIS.
In the ES protocol, the incident signal on each element of the
STAR-RIS can be reflected and transmitted with an ES ratio at
the same time slots, which can provide higher communication
degree of freedom. Since the ES strategy reduces the received
signal strength at UE 𝑓 (∀ 𝑓 ∈ {𝑡, 𝑟}), the channel estimation
accuracy is significantly decreased than the TS protocol [5].

As the number of STAR-RIS elements grows large in ELAA
systems, the far-field radiation assumptions are no longer valid
for ELAA systems, while the near-field propagation is likely
to happen due to the increase of array aperture [6]. In near-
field communications, more complex channel characteristics
need to be studied compared with the far-field channel, e.g.,
the spherical wavefront, variations angle of arrival/departure
(AoA/AoD) across array elements, and spatial non-stationarity
caused by visibility regions (VRs) [7]. Besides, a practical
case of radiation field will happen in ELAA systems, which
is the hybrid far- and near-field (hybrid-field) communication.
Note that the boundary of near-field region in RIS systems is
more strict compared with conventional extremely large-scale
MIMO (XL-MIMO) systems [6], and the hybrid-field radiation
and spatial non-stationarity effect are also more complex [8].

Compared with the channel estimation in RIS systems,
the design of channel estimation schemes in STAR-RIS sys-
tems is at a preliminary stage, especially for the hybrid-field
communications. In [5], a least square (LS)-based channel
estimation scheme was derived for STAR-RIS systems, which
applies to both the TS and ES protocol. However, as a classic
linear estimator, the performance of the LS estimation is
limited under the non-linear noise, and the pilot overhead
of LS is expensive for the extremely large-scale STAR-RIS.
Specifically, the minimum pilot overhead is 𝐾 𝑝𝑁 in [5], where
𝑁 and 𝐾 𝑝 denote the number of STAR-RIS elements and
UEs for a paired user group, respectively. Besides, in hybrid-
field STAR-RIS systems, the hybrid-field radiation and spatial
non-stationarity of the cascaded channel restrict the efficient
application of the existing compressed sensing (CS) algorithms
[7], where the pure sparse representation is hard to obtain by
designing a specific transform domain [8].

To reduce the training overhead and improve the channel
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Fig. 1. STAR-RIS assisted indoor mmWave communications.

estimation accuracy for hybrid-field STAR-RIS systems, we
propose a multi-task learning (MTL)-based joint cascaded
channel estimation scheme. Firstly, we formulate the hybrid-
field non-stationary channel modeling and the practical signal
model with hardware imperfection. Then, we exploit an ef-
fective multi-task network (MTN) to estimate the transmitting
and reflecting cascaded channel simultaneously, in which the
required pilot overhead can be reduced to 𝑁/Γ and Γ ≥ 1 is
a sampling interval in STAR-RIS element domain. Moreover,
the proposed MTN significantly reduces the network training
overhead compared with the single-task learning (STL)-based
channel estimation framework.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, a STAR-RIS with 𝑁𝑠 = 𝑁𝑠
1×𝑁

𝑠
2 uniform

planar array (UPA) elements is deployed for indoor commu-
nications. The wireless access point (AP) with 𝑀 = 𝑀1 × 𝑀2
UPA antennas communicates 𝐾 single-antenna UEs, aided by
a STAR-RIS with the ES operation protocol. By adopting the
typical elements-grouping strategy in RIS systems [5], [9], 𝑁𝑠

elements is divided into 𝑁 = 𝑁1 × 𝑁2 sub-surfaces, each of
which consists of 𝜈 = (𝑁𝑠

1/𝑁1) × (𝑁𝑠
2/𝑁2) adjacent elements.

We assume that 𝐾 users are equally located in transmitting and
reflecting space, and a UE𝑟

𝑘
and a UE𝑡

𝑘
, (𝑘 = 1, 2, · · · , 𝐾/2)

constitute a user group (UG).
To alleviate the severe multiplicative fading effect of the

cascaded link, the STAR-RIS is deployed closed to UEs [10],
and hence UEs are likely communicating in the near-field
region of the STAR-RIS, which is determined by the Rayleigh
distance 𝑍 . According to the near-field criterion in [6], the
near-field region for metasurface-aided systems is given by

𝑑R
𝑐,𝑠𝑑

UR
𝑘

𝑑R
𝑐,𝑠 + 𝑑UR

𝑘

< 𝑍 =
2𝐷2

𝜆
, (1)

where 𝑑R
𝑐,𝑠 and 𝑑UR

𝑘
denote the distance from the STAR-RIS to

the scatter (𝑐, 𝑠) and the distance from the UE 𝑓

𝑘
to the STAR-

RIS, respectively. Parameter 𝜆 is the carrier wavelength and
𝐷 is the equivalent array aperture of STAR-RIS systems. It
can be further implied that as long as any of 𝑑R

𝑐,𝑠 and 𝑑UR
𝑘

is shorter than the Rayleigh distance 𝑍 , the communication
link is operating in the near-field region. On the other hand,

from the perspective of AP with medium-size antennas, the
environmental scatters are distributed in the far-field region of
AP. Consequently, the far-field and near-field wireless signal
will coexist in this system, which constitutes the hybrid-field
STAR-RIS communications.

A. Hybrid-Field Channel Model

Following the clustered statistical MIMO channel modeling
framework for millimeter-wave (mmWave) communications,
the scatters are grouped into 𝐶s clusters and each cluster
is composed of 𝑆𝑐, (𝑐 = 1, 2, · · · , 𝐶s) scatters. The STAR-
RIS→AP channel G ∈ C𝑀×𝑁 can be expressed as

G = 𝛾

𝐶s∑︁
𝑐=1

𝑆𝑐∑︁
𝑠=1

𝜍𝑐,𝑠

√︃
𝑅
𝐺r
𝑐,𝑠𝐿

𝐺r
𝑐,𝑠a𝑐,𝑠b𝑇

𝑐,𝑠 , (2)

where 𝛾 =

√︂
1∑𝐶s

𝑐=1 𝑆𝑐
is a normalization factor, 𝜍𝑐,𝑠 ∼

CN(0, 1). Parameter 𝑅𝑐,𝑠, and 𝐿𝐺r
𝑐,𝑠 are the complex gain, the

STAR-RIS element pattern and the path loss for the scatter
(𝑐, 𝑠), respectively. b ∈ C𝑁×1 denotes the transmitting array
response at the STAR-RIS, and a ∈ C𝑀×1 represents the re-
ceiving response at the AP. In conventional far-field radiation,
the signals is approximated as uniform plane wave, and hence
the array response only depends on the identical AoA/AoD.
The receiving far-field response a can be represented as [10]

a
(
𝜙A
𝑐,𝑠 , 𝜑

A
𝑐,𝑠

)
=

[
1 · · · 𝑒 𝑗2𝜋𝑑 (𝑥𝑠𝑖𝑛𝜑A

𝑐,𝑠+𝑦 sin 𝜙A
𝑐,𝑠 cos 𝜑A

𝑐,𝑠 )/𝜆 · · ·

𝑒 𝑗2𝜋𝑑 ( (𝑀1−1)𝑠𝑖𝑛𝜑A
𝑐,𝑠+(𝑀2−1) sin 𝜙A

𝑐,𝑠 cos 𝜑A
𝑐,𝑠 )/𝜆

]
,

(3)

where 0 ≤ 𝑥 ≤ 𝑀1 − 1, 0 ≤ 𝑦 ≤ 𝑀2 − 1, and 𝑑 is the antenna
spacing. 𝜙A

𝑐,𝑠 and 𝜑A
𝑐,𝑠 denotes the azimuth and elevation of

AoA for the (𝑐, 𝑠)-th scatter path at the AP, respectively.
In near-field communications, generic non-uniform spherical
wave characteristics will be taken into account. The near-field
array response b𝑛 at the STAR-RIS can be expressed as [8]

bn
(
𝑑R
𝑐,𝑠

)
=

[
𝑒 𝑗2𝜋𝑑

R
𝑐,𝑠 (1,1)/𝜆, · · · , 𝑒 𝑗2𝜋𝑑R

𝑐,𝑠 (1,𝑁2 )/𝜆,

· · · , 𝑒 𝑗2𝜋𝑑R
𝑐,𝑠 (𝑁1 ,1)/𝜆, · · · , 𝑒 𝑗2𝜋𝑑R

𝑐,𝑠 (𝑁1 ,𝑁2 )/𝜆
]
, (4)

where 𝑑R
𝑐,𝑠 (𝑛1, 𝑛2) denotes the distance from the scatter (𝑐, 𝑠)

to the (𝑛1, 𝑛2)-th STAR-RIS element.
In ELAA systems, different parts of the STAR-RIS elements

may view different scatters (terminals) due to the limitation
of VRs, and hence the energy distribution across STAR-RIS
elements is unequal. Specifically, we consider the cluster VR
Ω𝑐 [8] and user VR Ψ𝑘 [7] for the STAR-RIS→scatters link
and the UE𝑘→STAR-RIS link, respectively. The cluster VR
Ω𝑐 of STAR-RIS is identified by the center (𝑉x

𝑐 , 𝑉
y
𝑐 ) and

length (𝑉x
𝑙
, 𝑉

y
𝑙
) of Ω𝑐, in which the VR lengths 𝑉𝑙 follows

the Lognormal distribution 𝑉𝑙 ∼ LN (𝜇𝑙 , 𝜎𝑙). The VR cover
vector 𝑣(Ω𝑐) ∈ C𝑁×1 for the 𝑐-th cluster can be expressed as

[𝑣(Ω𝑐)]𝑛 =

{
1, if 𝑛 ∈ Ω𝑐,

0, else. (5)
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Hence, the equivalent near-field array response with spatial
non-stationarity is given by b = bn ⊙ 𝑣(Ω𝑐), in which ⊙
represents the Hadamard product.

For the UE𝑘→STAR-RIS communication link, the receiving
array response u𝑘 at the STAR-RIS is related to the distance
𝑑UR
𝑘

(𝑛1, 𝑛2) from the UE𝑘 to the (𝑛1, 𝑛2)-th STAR-RIS ele-
ment. For the definition of user VR Ψ𝑘 , we follow the line-of-
sight (LOS) VR modeling method in [7]. The UE𝑘→STAR-
RIS channel h𝑘 can be represented as

h𝑘 =

√︃
𝑅h
𝑘
𝐿h
𝑘
u𝑘 ⊙ 𝑣(Ψ𝑘), (6)

where 𝑅h
𝑘

represents the radiation gain of STAR-RIS, 𝐿h
𝑘

is the
path loss, 𝑣(Ψ𝑘) ∈ C𝑁×1 denotes the UE𝑘’s VR cover vector.

B. Problem Formulation

We focus on the UE 𝑓

𝑘
→STAR-RIS→AP(∀ 𝑓 ∈ {𝑡, 𝑟})

cascaded channel estimation, and the orthogonal pilot trans-
mission strategy is adopted for different UGs [5]. Let
θ𝑡 = [𝛽𝑡1𝑒

𝑗 𝜃 𝑡1 , 𝛽𝑡2𝑒
𝑗 𝜃 𝑡2 , · · · , 𝛽𝑡

𝑁
𝑒 𝑗 𝜃

𝑡
𝑁 ]𝑇 ∈ C𝑁×1 and θ𝑟 =

[𝛽𝑟1𝑒
𝑗 𝜃𝑟1 , 𝛽𝑟2𝑒

𝑗 𝜃𝑟2 , · · · , 𝛽𝑟
𝑁
𝑒 𝑗 𝜃

𝑟
𝑁 ]𝑇 ∈ C𝑁×1 denote the transmit-

ting and reflecting vectors, respectively, in which the ES ratio
𝛽𝑛 satisfies 𝛽𝑡𝑛 + 𝛽𝑟𝑛 ≤ 1, 𝑛 = 1, 2, · · · , 𝑁 . The received pilot
signal y𝑘,𝑞 ∈ C𝑀×1 in the 𝑞-th time slot at the AP for the
UG𝑘 can be expressed as

y𝑘,𝑞 = G
(
diag(θ𝑡

𝑞)h𝑡
𝑘𝑠

𝑡
𝑘,𝑞 + diag(θ𝑟

𝑞)h𝑟
𝑘𝑠

𝑟
𝑘,𝑞

)
+ w𝑞

=

𝑟∑︁
𝑓 =𝑡

H 𝑓

𝑘
θ

𝑓
𝑞 𝑠

𝑓

𝑘,𝑞
+ w𝑞 , (7)

where h 𝑓

𝑘
∈ C𝑁×1 (∀ 𝑓 ∈ {𝑡, 𝑟}) represents the UE 𝑓

𝑘
→STAR-

RIS channel, while H 𝑓

𝑘
= Gdiag(h 𝑓

𝑘
) ∈ C𝑀×𝑁 is defined as

the cascaded channel. 𝑠 𝑓
𝑘,𝑞

denotes the transmitted pilot signal

at UE 𝑓

𝑘
. w𝑞 ∼ CN(0, 𝜎2I𝑀 ) is complex Gaussian noise.

In this work, a practical STAR-RIS systems with hardware
imperfection is considered. Firstly, the coupled phase-shifts 𝜃𝑡𝑛
and 𝜃𝑟𝑛 model for passive STAR-RIS hardware is given by

cos(𝜃𝑡𝑛 − 𝜃𝑟𝑛) = 0, 𝑛 = 1, 2, · · · , 𝑁. (8)

Then, the residual hardware impairments (HWIs) at the AP
and the UE are modeled by the additive Gaussian distribution.
Hence, we rewrite (7) as

ỹ𝑘,𝑞 =

𝑟∑︁
𝑓 =𝑡

H 𝑓

𝑘
θ

𝑓
𝑞 𝑝

𝑓

𝑘
(𝑠 𝑓

𝑘,𝑞
+ 𝜂 𝑓

𝑘,𝑞
) + w𝑞 + µ𝑞 , (9)

where 𝜂
𝑓

𝑘,𝑞
∼ CN(0, 𝜌2

𝑡 ,𝑘
𝜐
𝑓

𝑘
) represents the transmitted

distortion at the UE 𝑓

𝑘
and 𝜐

𝑓

𝑘
= E[𝑠 𝑓

𝑘,𝑞
(𝑠 𝑓

𝑘,𝑞
)∗]. µ𝑞 ∼

CN(0, 𝜌2
𝑟p𝑟 ) represents the HWIs at the AP, in which p𝑟 =∑𝑟

𝑓 =𝑡 (𝜐
𝑓

𝑘
I𝑀 ⊙ (H 𝑓

𝑘
θ

𝑓
𝑞 ) (H 𝑓

𝑘
θ

𝑓
𝑞 )𝐻 ). 𝜌𝑡 ,𝑘 and 𝜌𝑟 denote the error

vector magnitude (EVM) at UE 𝑓

𝑘
and AP, respectively.

Remark 1: Suppose 𝑄 time slots are used for pilots
transmission, we can received the pilot signal matrix Y𝑘 =

[ỹ𝑘,1, ỹ𝑘,2, · · · , ỹ𝑘,𝑄] ∈ C𝑀×𝑄 at the AP. In [5], the classic
LS estimation is utilized for the cascaded channel estimation

Fig. 2. The proposed multi-task learning (MTL) framework.

estimation in STAR-RIS systems, in which the pilot overhead
𝑄 is required to satisfy 𝑄 ≥ 2𝑁 due to the full-rank condition.
Note that there are two cascaded links needed to be estimated
compared with the conventional reflection-only RIS.

III. PROPOSED METHODS

A. Channel Correlations in STAR-RIS Systems

In STAR-RIS systems, the transmitting user UE𝑡
𝑘

and re-
flecting user UE𝑟

𝑘
communicate with the AP via the same

STAR-RIS, and hence the cascaded channels H 𝑓

𝑘
(∀ 𝑓 ∈

{𝑡, 𝑟}) associated with UE𝑡
𝑘

and UE𝑟
𝑘

shares the same STAR-
RIS→AP channel G. In [11], the multi-user channel correla-
tions is explicitly characterized as a scalar S𝑘 = H𝑡

𝑘
/H𝑟

𝑘
=

h𝑡
𝑘
/h𝑟

𝑘
, and then the channel estimation is converted to the

estimation of scalar S𝑘 for non-typical users. In this work,
we leverage the MTL to implicitly exploit the multi-user
correlations, and directly realize the joint cascaded channel
estimation. The MTL-based channel estimation model avoid
the additional training overhead caused by only supporting
one-to-one mapping in the conventional STL framework. In
addition, the MTL increases the diversity of training sample
space, which can attain implicit data augmentation.

Furthermore, since the sub-wavelength units of the meta-
surface are integrated closely in hardware implementation, the
channels at the neighboring elements of STAR-RIS are highly
correlated, which motivates us to design a channel extrapo-
lation strategy to reduce the pilot overhead. Specifically, we
assume that a LS pre-estimator is used to obtain the partial
channel H𝑃

𝑘
∈ C𝑀×𝑃 with a few pilot slots 𝑃. Specifically, we

select 𝑃 STAR-RIS elements as a subset P of whole STAR-
RIS elements, satisfying P = {1, Γ + 1, · · · , (𝑃 − 1) × Γ + 1}
with the sampling interval Γ = 2𝑈 (0 ≤ 𝑈 ≤ log2 𝑁). Then,
a channel extrapolation network is constructed to realize the
mapping from H𝑃

𝑘
to the complete channel matrix H 𝑓

𝑘
∈

C𝑀×𝑁 . However, in contrast to the partial channel acquisition
in conventional RIS systems [12], the single transmitting
channel H𝑡

𝑘
and reflecting channel H𝑟

𝑘
are hard to obtain due

to the superposed transmitting and reflecting signal at the
AP, which results in larger channel reconstruction difficulty
in STAR-RIS systems than conventional RIS systems.

B. Multi-task Learning for Joint Channel Estimation

In Fig. 2, we present the proposed MTL framework for joint
cascaded channel estimation, which is a low-level shared MTL
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framework and can be divided into three parts, i.e., shared
features extraction in the bottom of network, features interac-
tion in different expert branches, and multi-task heads in the
network output layers. In the completely shared-bottom MTL
with 𝑆 tasks, the individual output O𝑠 ∈ C𝑀×𝑁×2, (1 ≤ 𝑠 ≤ 𝑆)
for the 𝑠-th subtask head can be represented as

O𝑠 = 𝜔
𝑠 ( 𝑓 (H𝑃

𝑘 )), (10)

where H𝑃
𝑘

, function 𝑓 (·) and function 𝜔𝑠 (·) denote the input
tensor, the shared-bottom module and the individual 𝑠-th task-
specific head, respectively. In this framework, each subtask
affects other subtasks by updating common weight parameters
in the shared layers, while is also constructed in its own unique
way on top of the shared low-level representations.

To model the task relationships and learns task-specific
functionalities built upon shared representations, we leverage
a multi-gate mixture-of-experts (MMoE) framework to design
the proposed MTL framework [13], which is given by

O𝑠 = 𝜔
𝑠

(
𝐼∑︁

𝑖=1
𝑔𝑠

(
𝑓

(
H𝑃

𝑘

))
⊙ 𝜛𝑖

(
𝑓

(
H𝑃

𝑘

)))
, (11)

where function 𝜛𝑖 (·) denotes the 𝑖-th expert module to capture
shared task information for different perspectives. The function
𝑔𝑠 (·) is a gating network for the 𝑠-th task, which is generated
by utilizing the split attention mechanism. Specifically, for
the feature map F𝑠 obtained by the shared layers, the global
average pooling (GAP) layer is used to obtain the feature
vector v ∈ R𝐶 . Then, we utilize a linear layer with weight
W𝛼 ∈ R𝐶×𝐼𝐶 to generate the feature tensor v𝛼 = vW𝛼 ∈ R𝐼𝐶 ,
and the dimension of v𝛼 is reshaped as R𝐼×𝐶 . Next, we
utilize the Softmax function to generate the attention weight
α = [α1, · · · ,α𝑐, · · · ,α𝐶 ] ∈ R𝐼×𝐶 and α𝑐 ∈ R𝐼 , i.e.,
α𝑐 = Softmax(v𝑐) = 𝑒𝑣

𝑖
𝑐∑𝐼

𝑖=1 𝑒
𝑣𝑖𝑐

, satisfying
∑𝐼

𝑖=1 𝜶
𝑖
𝑐 = 1.

Based on the α𝑠 obtained by gating function 𝑔𝑠 (·), the
different expert branches are integrated with adaptive weights
to generate the feature map F 𝑓

𝛼 (∀ 𝑓 ∈ {𝑡, 𝑟}). Compared with
the completely shared-bottom MTL framework, the proposed
MTL can adaptively learn either shared information and task-
specific information by the experts assembling [13].

In multi-task optimization process, the loss balancing strat-
egy of different subtasks need to be carefully designed to
alleviate task competition. For the channel estimation in
STAR-RIS system, the ES ratio 𝛽 𝑓 will affect the estima-
tion performance of the transmitting and reflecting cascaded
channel, i.e., the corresponding channel estimation accuracy
can be improved with larger 𝛽 𝑓 and vice versa. In this work,
we aggregate the loss function of subtasks by an adaptive
learning method. Specifically, we utilize the prior ES ratio 𝛽 𝑓

to balance the network training, and then the homoscedastic
task uncertainty is used to obtain a leranable scalar 𝜎𝑠 for the
subtask 𝑠 [14], which is given by

Ljoint (𝜎𝑠) ≈
𝑆∑︁
𝑖=𝑠

1
2𝜎2

𝑠

(2 − 𝛽𝑠)L𝑠 + log𝜎𝑠 , (12)

Fig. 3. The network architecture for proposed shrinkage block (SB).

where 𝛽1 = 𝛽𝑡 , 𝛽2 = 𝛽𝑟 , and ℓ1-norm is used as the loss
function of each subtask, i.e., L𝑠 = |H 𝑓

𝑘
− O𝑠 |.

C. Attention-based Multi-task Network architecture

As illustrated in Fig. 2., based on the proposed MTL
framework, we further develop an efficient MTN backbone
to realize the joint hybrid-field channel estimation in STAR-
RIS systems. In the shared features extraction module of
the MTN, we first use a convolutional block (CB) with 𝐶

filters to increase the channel dimension of the input tensor
H̄𝑃

𝑘
= {Re(H𝑃

𝑘
), Im(H𝑃

𝑘
)} ∈ R𝑀×𝑃×2, i.e., H̄𝑃

𝑘
is converted

to F𝑐 ∈ R𝑀×𝑃×𝐶 . Considering the noise components of the
input tensor introduced by the LS pre-estimation, we design
a learnable denoising module by fusing the thresholding de-
noising and soft-attention mechanism. The shrinkage function
of traditional thresholding denoising can be expressed as [15]

𝑆𝐹 (x, τ ) =
{

sgn(x) ( |x| − 𝑎τ ), |x| ≥ τ ,
0, |x| ≤ τ ,

(13)

where sgn(·) denotes the symbol function, x, 𝑎 and τ ≥ 0
are the input signal, the given parameter and the threshold,
respectively. When parameter 𝑎 is set to 𝑎 = 1, (13) will
become the soft thresholding, while the selection of threshold
τ will significantly affect the denoising performance.

In [15], a deep residual shrinkage network is proposed to
automatically learn the threshold τ with specialized network
layers by imitating the operations of soft thresholding. How-
ever, the signal x is completely eliminated when |x| < τ
in (13), which may remove useful features except noises. In
this work, we propose an improved shrinkage block (SB) by
introducing a new learnable slope λ, which is given by

𝑆𝐹 (x, τ ,λ) =
{

sgn(x) ((λ + 1) |x| − τ ), |x| ≥ τ ,
λx, |x| ≤ τ .

(14)

Fig. 3 shows the detailed architecture of the proposed SB,
which is composed of three branches, i.e., the learning of
threshold τ , slope λ, and the identity connection. Note that the
range scale of λ and τ is different due to the distinguishable
functionalities. The threshold τ is required to satisfy τ ≥ 0
and is related to the input signal x. Hence, we first compute
the absolute value of feature map F𝑐, and then a feature vector
ξ̄ is obtained by similar methods with the attention weight α.
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However, we adopt the Sigmoid function to activate the adap-
tive weight 𝝃, satisfying 0 ≤ 𝝃 = Sigmoid(ξ̄) = 1

1+𝑒−ξ ≤ 1.
Lastly, the threshold τ is given by

τ = 𝝃 ⊙ |F𝑐 |. (15)

In the design of slope λ, the Tanh activation function is used
to provided wider contractility, i.e., −1 ≤ λ ≤ 1. The output
of the proposed SB is given by

F𝑠 = 𝑆𝐹 (F𝑐, τ ,λ) · W𝑙 + F𝑐, (16)

where W𝑙 ∈ R𝐶×𝐶 denotes the trainable weights of a linear
layer. In the shared-bottom layers of MTN, 𝐵 SB blocks are
stacked to extract the shared features.

In the expert branches, we introduce two different network
architecture to model the unique characteristics of hybrid-
field cascaded channel. Firstly, the 𝐵𝑒 SBs are used to re-
alize the signal denoising and capture the spatial features of
cascaded channel. Besides, the local spatial correlations of
non-stationary cascaded channel will be partly lost due to the
presence of VRs, which restricts the effective feature learning
ability for local convolutional operations-based CNN. Hence,
we design the self-attention mechanism-based Transformer
block (TB) to model the long-range dependency of the non-
stationary cascaded channel, which can obtain more effective
global information than convolutional operations. Specifically,
we flatten the feature map F𝑠 along the spatial dimension at
first, i.e., F𝑠 ∈ R𝑀×𝑃×𝐶 → F𝑡 ∈ R𝐿×𝐶 , (𝐿 = 𝑀 × 𝑃). Then,
different linear transformations are applied to obtain the Key
matrix K ∈ R𝐿×𝐷 , Query matrix Q ∈ R𝐿×𝐷 and Value matrix
V ∈ R𝐿×𝐷 . According to the scaled dot-product attention [16],
the output A ∈ R𝐿×𝐷 of self-attention module is given by

A = Softmax
(
QK𝑇

√
𝐷

)
· V = E · V, (17)

where E is termed as the attention matrix, the hyper-parameter
𝐷 = 𝐶 in TB, and 𝑇𝑒 TBs are stacked in the proposed MTN.

In the network design of subtask heads, we first use a SB
to learn the initial subtask features, and then 𝑈 upsampling
blocks (UBs) is used to recover the complete spatial dimension
𝑀 × 𝑁 of the cascaded channel. Each UB is composed of
a nearest interpolation layer with upscaling factor 2 and a
convolutional layer. In the last layer of multi-task heads, a
convolutional layer with 2 filters is used to match the two-
channel dimension of the cascaded channel matrix.

Remark 2: In the proposed MTN architecture, we introduce
three different attention mechanisms to learn common corre-
lations between subtasks and unique characteristics of each
subtasks, which can be divided into the split attention in the
gating network, the self attention in Transformer layers, and
the soft attention in the learnable shrinkage function.

IV. NUMERICAL RESULTS

In the simulation, we set 𝑀 = 4× 8, 𝑁𝑠 = 8× 64, 𝜈 = 2× 2,
and hence we have 𝑁 = 4 × 32. The communication carrier
frequency is set to 𝑓𝑐 = 73 GHz, while the large-scale path
loss parameters, array gains and the scatters distribution refer

to the setting in [10]. We set 𝜌 = 𝜌𝑡 = 𝜌𝑟 = 0.1 for the hard-
ware impairments in the transmitter and receiver. The hyper-
parameters of MTN are set to 𝐵 = 2, 𝐵𝑒 = 4, 𝑇𝑒 = 2, 𝐶 = 64,
respectively. In the proposed MTN, the required overhead 𝑄 is
equal to the number of selected STAR-RIS elements 𝑃 = 𝑁/Γ
in LS pre-estimation. We adopt normalized mean squared
error (NMSE) as the performance evaluation metric of channel
estimation, i.e., NMSE = E

{
| |Ĥ 𝑓

𝑘
− H 𝑓

𝑘
| |

2
𝐹
/| |H 𝑓

𝑘
| |2
𝐹

}
, in which

Ĥ 𝑓

𝑘
,∀ 𝑓 ∈ {𝑡, 𝑟} represents the estimated channel and | | · | |𝐹

denotes the Frobenius norm. We compare the proposed MTN
model with the existing channel estimation benchmarks from
the perspective of channel estimation accuracy and network
complexity. Specifically, we provided the LS estimator in [5],
the polar domain-based CS estimator in [6], and enhanced
super-resolution network (EDSR)-based DL estimator [12].
Moreover, we construct a STN model based on the proposed
MTN backbone to shows the generalization of the proposed
network in the case of STL framework, where the multi-task
heads are reduced to the single-task head.

In Fig. 4, we provide the NMSE performance for different
channel estimation schemes with the equal ES ratio, i.e.,
𝛽𝑡 = 𝛽𝑟 = 0.5. As a linear estimator, the LS estimator
provides sub-optimal channel estimation performance, and
large amount of pilot overhead is required. Since the effective
sparse representation is hard to obtain for the non-stationary
hybrid-field cascaded channel, the estimation performance of
the CS algorithm is limited. Thanks to the powerful non-linear
mapping ability of DL model, the DL estimators can obtain
better channel estimation accuracy than traditional estimators.
Since the TS protocol avoids the power leakage in ES protocol,
both EDSR and STN in TS protocol outperform channel
estimation models with ES protocol, in which the proposed
STN is superior to the EDSR model in terms of estimation
accuracy and network complexity. Compared with STL-based
estimators, the proposed MTN model has less pilot overhead
and training overhead of neural network, and can achieve the
estimation accuracy similar to the STN model in ES protocol.

Table I summarizes the required training overhead for DL-
based channel estimation schemes. Since the transmitting and
reflecting users need to send the pilots at different slots, and
hence the required pilot overhead in TS protocol is twice of
that in the ES protocol. For STL-based estimators, e.g., EDSR
and STN, two independent networks need to be trained and
saved for both transmitting and reflecting channels estimation,
which results in more floating point of operations (FLOPs) and
network parameters. On balance, the proposed MTL model
has minimum training overhead for the STAR-RIS channel
estimation, while the proposed STN version of the MTN model
can provide better estimation accuracy in TS protocol.

Fig. 5 shows the transmitting (T) and reflecting (R) channel
estimation performance of the proposed MTN model under
different ES ratios, in which 𝑟 = 𝛽𝑡/𝛽𝑟 denotes the power
ratio of between transmitting and reflecting modes. When
larger 𝑟 is allocated to the transmitting or reflecting modes,
the received pilot signal will involve more transmitting or
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TABLE I
TRAINING OVERHEAD FOR DIFFERENT DL MODELS

FLOPs (G) Parameters (M) Pilots (P)
TS-EDSR 1.286 × 2 1.583 × 2 𝑁/8 × 2
TS-STN 1.270 × 2 1.180 × 2 𝑁/8 × 2
ES-STN 0.859 × 2 1.422 × 2 𝑁/8
ES-MTN 1.321 1.662 𝑁/8

reflecting signal components, and hence the corresponding
cascaded channel estimation performance is also improved. In
Fig. 6, the NMSE performance under different pilot overhead
𝑄 is showed. With the increase of 𝑄, we can pre-estimate
more unknown entries of the cascaded channel matrix by the
LS algorithm, which reduces the required upscaling factor Γ

of channel extrapolation for the MTN model, and hence the
channel estimation accuracy is also improved.

V. CONCLUSIONS

By exploiting the ability to simultaneously tune transmis-
sion and reflection coefficients of metasurface, the STAR-
RIS provide a promising paradigm to realize the full-space
SREs. In this work, we proposed a MTL-based joint cascaded
channel estimation model by utilizing the channel correlations
in terms of user domain and spatial domain. In the proposed
MTN architecture, the multi-attention mechanism is leveraged
to model the shared features and task-specific information
for hybrid-field cascaded channels. Compared with existing
benchmarks, the proposed MTN can realize satisfactory chan-
nel estimation accuracy with less training overhead. In the
future works, we will explore the joint optimization of channel
estimation and beamforming in STAR-RIS systems.
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