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Abstract—A hybrid near- and far- field cascaded channel
prediction scheme is proposed for reconfigurable intelligent
surface (RIS) assisted low earth orbit (LEO) satellite networks.
In particular, an efficient neural network architecture, inspired
by the intrinsic characteristics of wireless signals and termed the
signal-informed network (SIN), is exploited to learn the precise
mapping between historical uplink channels and future downlink
channels. Specifically, in the proposed SIN, the time-domain
autocorrelation modeling required by the channel prediction
algorithm is converted into frequency-domain representation
modeling, which aims to represent high-dimensional channels in
terms of major frequency components. Furthermore, considering
the specific non-linear phase information of hybrid-field channels,
a multi-branch phase-aware module in SIN is developed to exhibit
a physics-compliant channel semantic representation. Finally, a
deep supervision-based encoder-decoder architecture with the
auxiliary loss function is constructed as the network backbone.
Simulation results demonstrate that compared to the state-of-
art channel prediction models, the proposed SIN model exhibits
superior channel prediction accuracy and convergence speed.

Index Terms—Channel prediction, near-field communications,
low earth orbit satellite, reconfigurable intelligent surface.

I. INTRODUCTION

DUe to severe signal propagation loss caused by long-
distance satellite-to-ground communication links, con-

ventional LEO satellites primarily support communication
scenarios with stable line-of-sight (LOS) links [1]. However,
in complex urban environments, the LOS transmission of the
LEO satellite is probably obstructed by large buildings. To
effectively enhance the signal coverage of LEO satellites, a
new type of electromagnetic metasurface, i.e., reconfigurable
intelligent surface (RIS), is expected to improve the service
quality of LEO satellites at lower cost. In [2], an energy-
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efficient transmission scheme is proposed for stacked intel-
ligent metasurface assisted LEO satellite systems.

In spite of the fact that various signal processing algorithms
have been put forward for RIS enabled terrestrial networks
[3], channel state information (CSI) acquisition in RIS-aided
LEO satellite systems is highly challenging. Firstly, the pas-
sive RIS needs to integrate a large number of reflecting
elements to improve passive beamforming gain, leading to
high-dimensional cascaded channels. Secondly, the high mo-
bility of LEO satellites introduces severe Doppler frequency
shifts, exhibiting fast time-varying channels. Thirdly, the large
propagation delay caused by the long-distance transmission
link results in the outdated CSI. Moreover, as the number of
RIS elements increases, the served users may be located in the
near-field region of the RIS [4]. In near-field communications,
the channel relates to both distances and angles, unlike the
angle-only dependence in far-field cases [5], [6], making typi-
cal angular-domain sparsity-based far-field channel estimation
and tracking algorithms unsuitable. Furthermore, due to the
dynamic nature of terrestrial scatterers, a hybrid near- and far-
field radiation scenario is suitable to RIS-aided LEO satellite
networks [7], causing the complex overall channel distribution.

Recently, data-driven channel prediction algorithms have
shown great potential, which are largely inspired by classic
time-series forecast networks. In particular, the long short-term
memory (LSTM) model and its derivative variants are popular
network models [8]–[10]. However, the conventional LSTM-
like models utilize a recursive forecast framework, inevitably
leading to error propagation in multi-step channel predictions.
In [11], a transformer-based parallel channel prediction model
was proposed to avoid error propagation through the self-
attention mechanism. Note that the computational complexity
of the classical self-attention mechanism grows quadratically
with the length of input, increasing the prediction complexity
for the high-dimensional cascaded channel. Moreover, existing
channel prediction models primarily consider far-field terres-
trial communications with the small-scale RIS [8]–[11].

To address the hybrid-field cascaded channel acquisition
for RIS-aided LEO satellite systems, we propose an efficient
neural network architecture to precisely predict downlink
multi-frame CSI from historical uplink CSI. We refer to the
proposed channel prediction network as the signal-informed
network (SIN), named for its architectural design that is
tailored to the intrinsic structure and correlations of wireless
signal. Specifically, in the proposed SIN, following Parseval’s
theorem of Fourier transform, we develop a frequency-domain
modeling module to capture global periodicity and trends of
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Fig. 1. RIS assisted LEO satellite communications.

historical CSI. Then, considering the non-linear phase and
long-range dependency of hybrid-field channels, we exploit
a multi-branch phase-aware module to decompose the feature
tensor into amplitude and phase components. Moreover, we
design a deep supervision strategy to enhance gradient flow
in SIN. Numerical results demonstrate that the proposed SIN
achieves superior channel prediction performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, we consider an RIS-aided LEO
satellite system under frequency division duplex (FDD) mode
in a typical urban environment, where the direct links between
an LEO satellite and 𝐾 single-antenna users are obstructed.
The LEO satellite is equipped with 𝑀 = 𝑀1 × 𝑀2 uniform
planar array (UPA) antennas. To enhance the signal coverage,
an RIS configured with 𝑁 = 𝑁1 × 𝑁2 UPA reflecting elements
is deployed to create the virtual LOS link. The heights of
the LEO satellite, the RIS and users are 𝐻S, 𝐻R and 𝐻U,
respectively. The users are assumed to be located in a near-field
region of the RIS. Following massive multiple-input multiple-
output (MIMO) channel modeling in LEO satellite networks
[12], the RIS→LEO satellite channel G ∈ C𝑀×𝑁 in time block
𝑡 at uplink carrier frequency 𝑓 u can be expressed as

G ( 𝑓 u, 𝑡) =

√︄
𝜅r𝐿RS

𝑡

𝜅r + 1
𝑒 𝑗 𝜂

RS
b(𝜙S

𝑡 , 𝜑
S
𝑡 )a𝑇 (𝜙RS

𝑡 , 𝜑
RS
𝑡 )𝑒 𝑗2𝜋𝜓RS

𝑡 +

𝛾RS
𝑆RS∑︁
𝑠=1

𝛽
RS,𝑠
𝑡

√︃
𝐿

RS,𝑠
𝑡 b(𝜙S,𝑠

𝑡 , 𝜑
S,𝑠
𝑡 )a𝑇 (𝜙RS,𝑠

𝑡 , 𝜑
RS,𝑠
𝑡 )𝑒 𝑗2𝜋𝜓

RS,𝑠
𝑡 ,

(1)

where 𝐿RS
𝑡 denotes the basic path loss for the LOS link1.

𝜅r denotes the Rician factor. 𝜂RS is the random initial
phase for the LOS path, following the uniform distribution
𝜂RS ∼ U[0, 2𝜋]. 𝜙S

𝑡 (𝜑S
𝑡 ) and 𝜙RS

𝑡 (𝜑RS
𝑡 ) denote azimuth (ele-

vation) angles of arrival and departure, respectively. Parameter
𝜓RS
𝑡 = 𝑡𝑇𝑠DRS

𝑡 − 𝑓 u𝜏RS
𝑡 signifies the fast time-varying and

1According to 3GPP standard for non-terrestrial networks [13], the basic
path loss in dB unit is given by 𝐿RS

𝑡 = 𝐿FS
𝑡 + 𝐿CL

𝑡 + 𝐿SF
𝑡 , which is composed

of free space path loss 𝐿FS
𝑡 , cluster loss 𝐿CL

𝑡 and shadow fading 𝐿SF
𝑡 .

long time decay characteristics for the LOS link, in which
𝑇𝑠 , 𝜏RS

𝑡 and DRS
𝑡 denote the sampling period, transmission

delay, and Doppler frequency shift of LOS link, respectively.
a(𝜙RS

𝑡 , 𝜑
RS
𝑡 ) ∈ C𝑁×1 and b(𝜙S

𝑡 , 𝜑
S
𝑡 ) ∈ C𝑀×1 represent the

transmitting array response at the RIS and receiving array
response at the LEO satellite, respectively. The far-field array
response with respect to azimuth angle 𝜙𝑖𝑡 and elevation angle
𝜑𝑖𝑡 (𝑖 ∈ {S,RS}) can be expressed as

a(𝜙𝑖𝑡 , 𝜑𝑖𝑡 ) = a1 (𝜙𝑖𝑡 , 𝜑𝑖𝑡 ) ⊗ a2 (𝜑𝑖𝑡 ),

a1 (𝜙𝑖𝑡 , 𝜑𝑖𝑡 ) ≜
1

√
𝑛1

[
1, 𝑒 𝑗 𝜍 sin 𝜙𝑖

𝑡 sin 𝜑𝑖
𝑡 , . . . , 𝑒 𝑗 𝜍 (𝑛2−1) sin 𝜙𝑖

𝑡 sin 𝜑𝑖
𝑡

]𝑇
,

a2
(
𝜑𝑖𝑡
)
≜

1
√
𝑛2

[
1, 𝑒 𝑗 𝜍 cos 𝜑𝑖

𝑡 , . . . , 𝑒 𝑗 𝜍 (𝑛2−1) cos 𝜑𝑖
𝑡

]𝑇
, (2)

where 𝑛1 ∈ {𝑀1, 𝑁1}, 𝑛2 ∈ {𝑀2, 𝑁2}, 𝜍 = 2𝜋𝑐
𝑓 u 𝑑, 𝑐 is the

speed of light, and 𝑑 denotes adjacent element spacing.
For the NLOS channel component in the RIS→LEO satel-

lite link, 𝑆RS represents the number of scatterers, and 𝛾RS =

1/
√︁
(𝜅r + 1)𝑆RS is a normalization factor. The complex gain

𝛽
RS,𝑠
𝑡 of scatterer path 𝑠 is generated according to the expo-

nential power delay profile (PDP)2. Due to space limitation,
the other NLOS channel parameters for scatterer path 𝑠, e.g.,
𝐿

RS,𝑠
𝑡 , 𝜙S,𝑠

𝑡 , 𝜑S,𝑠
𝑡 and 𝜓

RS,𝑠
𝑡 , are defined in accordance with

those of the LOS link.
Considering 𝑆n near-field and 𝑆f far-field scatterers in the

𝑘-th user→RIS link, the hybrid-field channel h𝑘 ∈ C𝑁×1 can
be expressed as

h𝑘 ( 𝑓 u, 𝑡) =

√√
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𝛽
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)𝑒 𝑗2𝜋𝜓
UR,𝑠
𝑡 , (3)

where 𝑆UR = 𝑆n+𝑆f , 𝛾UR = 1/
√︃
(𝜅r
𝑘
+ 1)𝑆UR, 𝑑UR

𝑘,𝑡
denotes the

distance from the 𝑘-th user to the center of RIS, and 𝜅r
𝑘

denotes
the Rician factor for 𝑘-th user→RIS link. Similar to (1), 𝜓UR

𝑡 =

𝑡𝑇𝑠DUR
𝑘,𝑡

− 𝑓 u𝜏UR
𝑘,𝑡

and 𝜓UR,𝑠
𝑡 = 𝑡𝑇𝑠DUR,𝑠

𝑘,𝑡
− 𝑓 u𝜏UR,𝑠

𝑘,𝑡
, while pa-

rameters 𝐿UR
𝑘,𝑡
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), 𝜙UR
𝑘,𝑡
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),DUR
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(DUR,𝑠
𝑘,𝑡

),
and 𝜏UR

𝑘,𝑡
(𝜏UR,𝑠
𝑘,𝑡

) denote the basic path loss, initial phase, com-
plex gain, azimuth angle, elevation angle, Doppler frequency
shift and transmission delay for LOS link (scatterer path 𝑠),
respectively. c(𝜙UR

𝑘,𝑡
, 𝜑UR
𝑘,𝑡
, 𝑑UR
𝑘,𝑡

) denotes the near-field receiving
array response at the RIS for the LOS link, which is given by

c(𝜙UR
𝑘,𝑡 , 𝜑

UR
𝑘,𝑡 , 𝑑

UR
𝑘,𝑡 ) = c1 (𝜙UR

𝑘,𝑡 , 𝜑
UR
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UR
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𝑘,𝑡 ),

[c1]𝑛1 ≜ 𝑒
− 𝑗 2𝜋 𝑓 u

𝑐
(−𝑛1𝑑 cos 𝜙UR

𝑘,𝑡
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𝑘,𝑡
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𝑛1

2𝑑2 (1−(cos 𝜙UR
𝑘,𝑡

sin 𝜑UR
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)2 )

2𝑑UR )
,

[c2]𝑛2 ≜ 𝑒
− 𝑗 2𝜋 𝑓 u

𝑐
(−𝑛2𝑑 cos 𝜑UR
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𝑘,𝑡

2𝑑UR )
, (4)

where 𝑛1 = 𝑛1 − 𝑁1+1
2 and 𝑛2 = 𝑛2 − 𝑁2+1

2 .

2In general, the channel path gain 𝛽
RS,𝑠
𝑡 can be characterized by the

complex Gaussian distribution [8], [12], i.e., 𝛽RS,𝑠
𝑡 ∼ CN(0, 𝜎RS,𝑠

𝑡 ) with∑𝑆−1
𝑠=0 𝜎

RS,𝑠
𝑡 = 1. Here, 𝜎RS,𝑠

𝑡 is referred to as the PDP and is calculated
with the single slope exponential PDP.
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For the NLOS component in (3), the definition of array
response c(𝜙UR,𝑠

𝑘,𝑡
, 𝜑

UR,𝑠
𝑘,𝑡

, 𝑑
UR,𝑠
𝑘,𝑡

) relies on the distance 𝑑
UR,𝑠
𝑘,𝑡

from scatterer 𝑠 to the RIS. If 𝑑
UR,𝑠
𝑘,𝑡

> 𝑅, the expres-
sion of c(𝜙UR,𝑠

𝑘,𝑡
, 𝜑

UR,𝑠
𝑘,𝑡

, 𝑑
UR,𝑠
𝑘,𝑡

) in (4) will be simplified into
c(𝜙UR,𝑠

𝑘,𝑡
, 𝜑

UR,𝑠
𝑘,𝑡

), following the far-field definition in (2). On
the contrary, if 𝑑

UR,𝑠
𝑘,𝑡

≤ 𝑅, c(𝜙UR,𝑠
𝑘,𝑡

, 𝜑
UR,𝑠
𝑘,𝑡

, 𝑑
UR,𝑠
𝑘,𝑡

) will be
expressed as (4). The near-field array response is not only
related to angles 𝜙UR,𝑠

𝑘,𝑡
and 𝜑

UR,𝑠
𝑘,𝑡

but also relied on distance
𝑑

UR,𝑠
𝑘,𝑡

. In particular, the phase of far-field array response is
a linear function, while the near-field array response is non-
linear due to the presence of the second-order terms in (4).

Let θ = [𝑒 𝑗 𝜃1 , 𝑒 𝑗 𝜃2 , · · · , 𝑒 𝑗 𝜃𝑁 ]𝑇 ∈ C𝑁×1 represent the phase
shift vector of the RIS. The received pilot signal y𝑞 ∈ C𝑀×1

in the 𝑞-th slot at the LEO satellite is given by

y𝑞 =

𝐾∑︁
𝑘=1

Gdiag(θ𝑞)h𝑘𝑠𝑘,𝑞 + w𝑞,𝑘 , (5)

where diag(·) denotes the vector diagonalization operation,
𝑠𝑘,𝑞 is the transmit signal of the 𝑘-th user, and w𝑞 ∼
CN(0, 𝜎2

𝑛I𝑀 ) is the Gaussian noise with variance 𝜎2
𝑛 . We

denote H𝑘 = Gdiag(h𝑘) ∈ C𝑀×𝑁 as the cascaded channel.

B. Problem Formulation

In this work, we focus on the downlink channel prediction of
multiple frames according to the historical uplink CSI. Without
loss of generality, we adopt the minimum variance unbiased
estimator estimator with multi-user orthogonal pilots to ac-
quire the uplink CSI due to its simplification and popularity.
Note that the proposed channel prediction scheme is applicable
to existing low-overhead channel estimation algorithms [14].
Let Ỹ𝑘∈ C𝑀×𝑄 denote received pilot signal for the 𝑘-th user
after 𝑄 slots, the estimated uplink CSI is given by [15]

Ĥu
𝑘 = Ỹ𝑘𝚯H

(
𝚯𝚯H

)−1
, (6)

where 𝚯 = [θ1, · · · , θ𝑄]∈ C𝑁×𝑄, and the discrete Fourier
transform (DFT)-based reflection protocol is adopted to design
𝚯, i.e., the (𝑝1, 𝑝2)-th element of 𝚯 satisfies 𝚯𝑝1 , 𝑝2 =

𝑒− 𝑗 (2𝜋 (𝑝1−1) (𝑝2−1)/𝑄) , (1 ≤ 𝑝1, 𝑝2 ≤ 𝑄).
According to the estimated historical cascaded channel

Ĥu
𝑘

= [Ĥu
𝑘,1, Ĥ

u
𝑘,2, · · · , Ĥ

u
𝑘,𝑃u ] ∈ C𝑀×𝑁×𝑃u

from the past
𝑃u frames, we construct a channel prediction framework to
realize the precise prediction of downlink cascaded channel
Hd
𝑘
= [Hd

𝑘,1,H
d
𝑘,2, · · · ,H

d
𝑘,𝑃d ] ∈ C𝑀×𝑁×𝑃d

in the next 𝑃d

consecutive frames. In the neural network, the input tensor
is designed as Hu

𝑘
= [ℜ(Ĥu

𝑘
),ℑ(Ĥu

𝑘
)] ∈ C𝑀×𝑁×2𝑃u

, and the
data label is Hd

𝑘
= [ℜ(Hd

𝑘
)ℑ(Hd

𝑘
)] ∈ C𝑀×𝑁×2𝑃d

, where ℜ(·)
and ℑ(·) denote the real and imaginary parts of a complex
number, respectively. Let Ĥd

𝑘
∈ C𝑀×𝑁×2𝑃d

denote the output
of the channel prediction network model, and ℓ1 norm-based
loss function is defined as

L
(
Hd
𝑘 , Ĥ

d
𝑘

)
=

1
𝑀𝑁𝑃d

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑃d∑︁
𝑝=1




Hd
𝑘,𝑚,𝑛, 𝑝 − Ĥd

𝑘,𝑚,𝑛, 𝑝




.
(7)

Finally, we carry out the real-to-complex operation to obtain
the prediction channel H̃d

𝑘,𝑚,𝑛, 𝑝
= Ĥd

𝑘,𝑚,𝑛, 𝑝
+ 𝑗Ĥd

𝑘,𝑚,𝑛, 𝑝+𝑃d .

III. PROPOSED CHANNEL PREDICTION NETWORK

The proposed channel prediction network, i.e., the SIN
architecture, is composed of the frequency-domain multilayer
perceptron (MLP) module and the multi-branch phase-aware
module, aiming to construct the mapping from Hu

𝑘
to Hd

𝑘
.

A. Frequency-Domain MLP Module
The existing channel prediction works commonly carry

out a series of dedicated operations in the time domain of
the historical CSI, focusing on the variations in amplitude
over time. In this work, we exploit a frequency-domain MLP
module to capture the global dependencies of the cascaded
channel, transforming time-domain autocorrelation modeling
into frequency-domain representation3. The Parseval’s theorem
states that the total energy of a signal can be measured
equivalently in time or frequency domains as [16]∫ ∞

−∞
|H(𝑡) |2d𝑡 =

∫ ∞

−∞
|H ( 𝑓 ) |2d 𝑓 , (8)

where H(𝑡) and H( 𝑓 ) denote the time-domain and frequency-
domain tensors, respectively. We observe that H(𝑡) can be
represented by utilizing the frequency components H( 𝑓 ) that
concentrates the majority of energy, especially for the cascaded
channel with limited scatterers. In the proposed SIN, the DFT
in the time domain is employed to convert input tensor Hu

𝑘
as

HT [𝑣] = F T (Hu
𝑘) =

𝑃u−1∑︁
𝑝=0

𝐻u
𝑘 [𝑝]𝑒

− 𝑗2𝜋 𝑣𝑝

𝑃u . (9)

According to the conjugate symmetry property of DFT, only
half of H̃T ∈ C𝑀×𝑁×𝑃u

is sufficient to represent overall
frequency domain information. Then, a specialized frequency
domain MLP module is designed, where the output feature of
the 𝑙-th layer can be expressed as

Y𝑙 = 𝜎𝑙
(
Y𝑙−1W𝑙 + B𝑙

)
, (10)

where Y0 = HT
for 𝑙 = 0. 𝜎𝑙 (·), W𝑙 = W𝑙

𝑟 + 𝑗W𝑙

𝑖 and
B𝑙 = b𝑙𝑟 + 𝑗b

𝑙

𝑖 denote the activation function, complex-valued
weights and biases of the 𝑙-th layer in MLP, respectively.
Following the principle of complex-value multiplication, (10)
can be rewritten as

Y𝑙 =𝜎𝑙
(
ℜ

(
Y𝑙−1

)
W𝑙

𝑟 − ℑ
(
Y𝑙−1

)
W𝑙

𝑖 + b𝑙𝑟
)

+ 𝑗𝜎𝑙
(
ℜ

(
Y𝑙−1

)
W𝑙

𝑖 + ℑ
(
Y𝑙−1

)
W𝑙

𝑟 + b𝑙
)
. (11)

Finally, the inverse discrete Fourier transform (IDFT) is
employed to restore the frequency domain characteristics to
the time domain, and a feature ascending dimension operation
is carried out that projects F into Fi ∈ R𝑀×𝑁×𝐶 .

3This paper considers the narrowband temporal-spatial channel prediction
for MIMO systems, where the concept of domain transformation pertains
to feature tensor operations within the neural network, rather than to the
time-frequency domain channels in multi-carrier systems. In other words, the
frequency-domain representation is defined as the feature tensor obtained by
performing DFT on the input tensor.
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Algorithm 1 Multi-branch phase-aware module
Input: Feature tensor Fi ∈ R𝑀×𝑁×𝐶 , Splitting factor S = 𝐶/𝐶𝑠
Output: Feature tensor Fo ∈ R𝑀×𝑁×𝐶

1: Segment splitting:
2: Fs = [Fi

1,F
i
2, . . . ,F

i
S] ∈ R

𝑀×𝑁×𝐶𝑠S

3: satisfying F𝑠 ∈ R𝐻×𝑊×𝐷 (1 ≤ 𝑠 ≤ S)
4: Height-Channel permutation in the first branch:
5: Rearrange Fs as Fs

1 ∈ R𝐶𝑠×𝑁×𝑀S

6: Pass the phase-aware module Fp
1 = 𝛿(Fs

1) ∈ R
𝐶𝑠×𝑁×𝑀S

7: Rearrange Fp
1 as Fo

1 ∈ R𝑀×𝑁×𝐶𝑠S

8: Width-Channel permutation in the second branch:
9: Rearrange Fs as Fs

2 ∈ R𝐶𝑠×𝑀×𝑁S

10: Pass the phase-aware module Fp
2 = 𝛿(Fs

2) ∈ R
𝐶𝑠×𝑀×𝑁S

11: Rearrange Fp
2 as Fo

2 ∈ R𝑀×𝑁×𝐶𝑠S

12: Linear mapping in the third branch: Fo
3 = FiWc + bc

13: Spatial DFT in the fourth branch:
14: 2D DFT: Fs

4 [𝑢, 𝑣] =
∑𝑀−1
𝑚=0

∑𝑁−1
𝑛=0 Fi [𝑚, 𝑛]𝑒− 𝑗2𝜋(

𝑢𝑚
2𝑀 + 𝑣𝑛

𝑁 )
15: Modulate spectrum with learnable filter 𝚿: Fp

4 = 𝚿 ⊙ Fs
4

16: 2D IDFT in the spatial domain: Fo
4 = F S,−1

(
Fp

4

)
17: Multi-branch feature aggregation:
18: Aggregation with adaptive weights α𝑙 : Fo

5 =
∑3
𝑙=1 Fo

𝑙
⊙ α𝑙

19: Aggregation with feature concatenation: Fo
6 = [Fo

4,F
o
5]

20: Aggregation with skip connection: F̂o = Fo
6Wo + Fi

B. Multi-Branch Phase-Aware Module

It is well known that a general physic form of wireless
signal/channel vector can be represented as z = |z| ⊙ 𝑒 𝑗ϑ,
where |z| and ϑ denote amplitude and phase of z, respectively.
According to Euler’s formula, it can be unfolded as

z = |z| ⊙ cosϑ + 𝑗 |z| ⊙ sinϑ. (12)

In the proposed phase-aware module, given an input tensor
z ∈ R𝑀 , its amplitude tensor |z| and phase tensor ϑ are
constructed by utilizing linear layers, i.e., |z| = zWa + ba

and ϑ = zWp + bp
, where W𝑖 ∈ R𝑀×𝑀 and b𝑖 ∈ R𝑀 (𝑖 ∈

{a, p}) are the weights and bias of linear layers, respectively.
To preserve diverse information, we utilize the concatenate
operation to replace the summation operation in (12), i.e.,
zc

= [|z| ⊙ cosϑ, 𝑗 |z| ⊙ sinϑ] ∈ R2𝑀 . By this way, the feature
tensor Fi is decomposed into the amplitude and phase parts.

To characterize the spatial correlations of the cascaded chan-
nel, we further propose a multi-branch phase-aware module.
As illustrated in Algorithm 1, the multi-branch phase-aware
module comprises four feature extraction branches along dif-
ferent dimensions of the input tensor Fi, i.e., the height-
channel permutation branch, the width-channel permutation
branch, the linear mapping branch, and the spatial DFT branch.
Additionally, the phase-aware module 𝛿(·) is integrated into
selected branches, enhancing the efficient feature learning for
the hybrid-field channel4. Finally, the feature tensors Fo

𝑖
(𝑖 ∈

{1, . . . , 4}) are aggregated to generate the output feature Fo

with various feature fusion strategies.

4In RIS-aided LEO satellite systems, the high mobility of the LEO satellite
induces severe Doppler frequency shifts, leading to dramatic phase variations
in the cascaded channel. Particularly, for the considered hybrid-field channel,
the non-linear phase of the array response imposes greater challenges for
channel prediction. Hence, we employ the phase-aware module to focus on
the specific phase information of feature tensors.
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Fig. 2. Deep supervision-based encoder-decoder architecture.

C. Deep Supervision-Based Encoder-Decoder Architecture

Fig. 2 presents the node graph for deep supervision-based
encoder-decoder architecture, which takes the frequency-
domain MLP and the multi-branch phase-aware module as ba-
sic components. After frequency-domain modeling, the tensor
operation for feature map F𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝐷) is given by

F𝑖, 𝑗 =

{
Ee (F𝑖, 𝑗 ) , 𝑗 = 1,
Ee

( [ [
F𝑖,𝑠

] 𝑗
𝑠=0 , E

d (·)
(
F𝑖+1, 𝑗

) ] )
, 𝑗 > 1, (13)

where Ee (·) and Ed (·) denote an encoder and a decoder op-
eration, respectively. Each encoder has a multi-branch phase-
aware module and a convolutional layer with stride 2, while
each decoder consists of a multi-branch phase-aware module
and a nearest interpolation-based upsampling layer.

To improve gradients flow and parameters update in the
node graph, we design a deep supervision training strategy to
reconstruct the loss function in (14), which is given by

L =

𝐷−1∑︁
𝑖=1

α𝑖L
(
Hd
𝑘 , Ĥ

d
𝑘,𝑖

)
+ (1 −α𝑖)L

(
F T (Hd

𝑘), F
T (Ĥd

𝑘,𝑖)
)
,

(14)

where 0 ≤ α𝑖 ≤ 1 is a pre-defined weight, and an auxiliary
loss term L

(
F T (Hd

𝑘
), F T (Ĥd

𝑘,𝑙
)
)

is introduced to align the
predicted CSI and true CSI in the frequency domain.

IV. NUMERICAL RESULTS

In simulation setups, we set 𝑀 = 4 × 8, 𝑁 = 4 × 64,
𝐾 = 4, 𝑃u = 10, 𝑃d = 5, 𝑆n = 𝑆f = 3, 𝜅r = 𝜅r

𝑘
= 10 dB,

𝐻S = 500 km, 𝐻R = 20 m, 𝐻U = 1 m, 𝑣S = 7000 m/s,
𝑣U = 1 m/s, 𝑓 u = 9.9 GHz and downlink carrier frequency
𝑓 d = 10.1 GHz. The parameters of path loss and shadow
fading follow the 3GPP TR 38.811 protocol [13]. In the hyper-
parameter setups of the proposed SIN, we set S = 2, 𝐷 = 3,
𝐶 = 48, α𝑙 = 0.6, 𝑖 ∈ {1, 2}, and the number of training
epochs is P = 50. We compare the proposed SIN with state-
of-the-art benchmarks, i.e., LSTM [8], CNN-LSTM [9], TCN
[10], and Transformer [11]. The normalized mean squared
error (NMSE) is employed as the performance metric, i.e.,
NMSE = E{| |H̃d

𝑘
− Hd

𝑘
| |2
𝐹
/| |Hd

𝑘
| |2
𝐹
}.

In Fig. 3, we present NMSE performance of different
channel prediction schemes as the uplink SNR. Due to the
high-dimensional characteristics of cascaded channel, the se-
rialization operation-based traditional LSTM model is hard
to accomplish the desired channel prediction task. Although
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Fig. 3. NMSE vs. SNR for different schemes.
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TABLE I
TRAINING OVERHEAD FOR DIFFERENT NETWORK MODELS

Networks Parameters (M) FLOPs (G)
LSTM 290.2 4.063

CNN-LSTM 296.8 4.701
TCN 10.242 3.955

Transformer 1.310 15.61
Proposed SIN 3.315 7.859

existing enhanced approaches, e.g., CNN-LSTM, TCN and
Transformer, provide certain performance improvements, the
proposed SIN exhibits superior channel prediction accuracy
across the entire range of SNR. In Fig. 4, we provide NMSE
performance of various schemes in the 𝑝-th prediction frame
(𝑝 = {1, 2, . . . , 𝑃d}), where the uplink SNR is set to 0 dB in
the test stage. As the number of prediction frames increases,
the NMSE performance of all channel prediction schemes
declines due to weaker correlations. However, compared to
existing benchmarks, the proposed SIN demonstrates superior
accuracy and robustness. Moreover, Fig. 5 shows the conver-
gence performance of different schemes during the network
training stage, in which the proposed SIN can achieve the
faster convergence than other schemes.

Table I summarizes the number of parameters and floating
point of operations (FLOPs) of different network models.
Compared to the classic channel prediction models, e.g.,
LSTM, CNN-LSTM and TCN, the proposed SIN requires
fewer parameters. Additionally, it incurs lower FLOPs than the
Transformer. Overall, the proposed SIN achieves a superior
balance between the spatial and computational complexities
while also delivering enhanced accuracy in channel prediction.

V. CONCLUSIONS

This letter proposed an efficient high-dimensional hybrid-
field cascade channel prediction model for the RIS-aided FDD
satellite. Specifically, we designed frequency-domain MLP
and multi-branch phase-aware modules to realize global time-
domain and spatial-domain correlation modeling of cascaded
channels, respectively. A deep supervision-based encoder-
decoder architecture was developed to exploit the latent pre-
sentations of high-dimensional hybrid-field channels. Numeri-
cal results demonstrate that the proposed SIN exhibits superior

channel prediction accuracy compared to existing benchmarks.
In the future works, on the basis of the proposed SIN, we
will further develop the specialized CSI acquisition scheme
for multi-hop RIS empowered non-terrestrial networks.
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