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Deep Compressed Sensing-Based Cascaded Channel Estimation
for RIS-Aided Communication Systems

Wenwu Xie™, Jian Xiao

Abstract—To reduce the pilot overhead of cascaded channel
estimation for RIS-aided Massive MIMO communication system,
we proposed a deep compressed sensing-based channel estimation
scheme, where U-shaped network (U-Net), an encoder-decoder
with skip connection, is used to recover the high-dimensional
cascaded channel matrix from limited pilot overhead. The skip
connections between encoder and decoder can fuse features of
different scales and semantic by concatenating the feature map,
which enhance the reconstruction performance of cascaded chan-
nel. To further improve the feature extraction ability of U-Net,
we design a ResU-Net architecture with stacked residual units to
increase the depth of network. Simulation results show the chan-
nel estimation of ResU-Net is more accurate than conventional
algorithm and other network model. Meanwhile, ResU-Net has
good generalization and robustness for different pilot lengths and
phase quantization errors.

Index Terms—Reconfigurable intelligent surface, channel esti-
mation, deep compressed sensing, encoder-decoder.

I. INTRODUCTION

Y EMPLOYING a large number of sub-wavelength units

with tunable electromagnetic response, reconfigurable
intelligent surface (RIS) can artificially control the propa-
gation of electromagnetic wave to realize the smart radio
environment [1], which have been applied to the various com-
munication scenarios [2], [3]. The most promising applications
of RIS required the accurate channel state information (CSI)
to design the reflection vector of RIS. However, in RIS-aided
Massive MIMO system, high-dimensional cascaded channel
estimation will bring more pilots overhead, which becomes a
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key challenge to adjust the passive beamforming of RIS in
real time.

Many efficient design ideas have been proposed for reducing
pilot overhead, including the semi-passive channel estima-
tion [4], the compressed sensing (CS)-based sparsity channel
estimation [5] and channel vary characteristic-based channel
factorization [6]. In [4], a low-complexity channel estima-
tion algorithm based on direction-of-arrival (DOA) estimation
was proposed. However, few radio frequency (RF) chains are
equipped with RIS for DOA estimation, which increased the
energy consumption. Considering the sparsity in mmWave
channel, the work of [5] deduced a sparse representation
of cascaded channel based on the product of Katri-Rao and
Kronecker, and CS algorithms are used to recover the sparse
channel. In [6], the cascaded channel estimation was modeled
as a matrix factorization problem according to the character-
istic of slow-varying and fast-varying channel components.

Due to the powerful non-linear mapping ability of deep
learning (DL) technology, data driven-based DL model is
widely used to the wireless communication. The work of [7]
first applied DL to the online configuration of RIS, which sig-
nificantly enhanced the indoor signal focusing. Considering
the multiple RISs-aided communication system, a super-
vised learning-based phase configuration scheme was proposed
in [8], which can obtain the achievable rate closed to the
optimal scheme. In [9], residual network (ResNet) was used
to denoise the CSI obtained by least square (LS) algorithm.
However, the LS-based initial channel estimation required a
lot of pilot overhead. In [10], deep complex-value denoising
network was used to improve the estimation accuracy of CS
algorithm. In [11], [12], channel estimation was regarded as
the super-resolution (SR) reconstruction in computer vision.
The design ideas of [9]-[12] used traditional algorithm and
DL to realize channel estimation stage by stage, which was not
easy for the online deployment of general intelligent commu-
nication system. Based on the element-by-element reflecting
protocol, convolutional neural network (CNN) was used to
construct an end-to-end mapping from received pilot signal
to CSI in [13], where the required pilot length was equal to
LS algorithm. In the existed end-to-end channel estimation
network, the number of neural nodes of input layer was deter-
mined by the pilot lengths, and thus a trained model was not
compatible with the different pilot lengths.

In order to reduce the pilot overhead and improve the
flexibility of channel estimation network for different pilot
lengths, we combine the deep compressed sensing (DCS)
framework [14] and U-shaped network (U-Net) [15] to recon-
struct the cascaded channel matrix from limited pilot overhead.
Firstly, we boost the dimension of low-dimensional received
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Fig. 1. The RIS-aided indoor communication system with C clusters between
RIS and AP.

pilot signal by matrix multiplication, which is equal to the
linear layer of neural network. Secondly, U-Net, an encoder-
decoder architecture with skip connection, is adopted to
compress the input data and reconstruct the cascaded chan-
nel matrix. Moreover, we introduce residual learning [16] to
the original U-Net (called ResU-Net) to increase the depth of
network, which can further improve the channel estimation
accuracy.

II. SYSTEM MODEL
A. Channel Model

Considering an indoor RIS-aided uplink mmWave com-
munication system, Fig. 1 shows the three-dimensional (3D)
geometry model. The access point (AP) with M = My x Ms
uniform planar array (UPA) antennas lies on the yz plane
and the RIS with N = N; x No UPA reflection elements
is mounted on the side wall (zx plane). Let G € CMXN and
h € CV*1 denote the RIS-AP channel and the user-RIS chan-
nel, respectively. Following the 3GPP standardization and 5G
indoor physical channel modeling [17], [18], the clustered sta-
tistical MIMO model is adopted [19]. Suppose Mg scatters are
grouped under C clusters between the AP and the RIS, and
each cluster has S.(c = 1,2,..., C) scatters. The channel G
can be decomposed of the non-line of sight (NLoS) component
G108 and line of sight (LoS) component Gp,,5. GNT,05 can
be represented as

(O ~
GNLoS = 7 Z Z ﬁc,s

Gy
(acs)Lcs
c=1s=1
Gr Gy T(.G: G
X al( s O )ag ( Cs,act) (1)

where v = /ﬁ is a normalization factor and BC, s ~
c=1%~¢

CN(0,1) is the path gain. $S7 (aS7) and ¢S, 7;) repre-

sent the azimuth (elevation) angle of arrival (AOA) at the AP,

and the azimuth (elevation) angle of departure (AoD) at the

RIS for the (¢, s)th path, respectively. The AoD (;Sg ¢ and agg

follow conditionally Laplacian distribution. Ge(agg) denotes
the RIS element radiation for the (¢, s)th scatter. We adopt
cos? pattern to model G, (och:iS), which is a popular represen-
tation for feed patterns in the reflectarray antenna design [20,

Sec. 9.7.3]. Ge(agg) can be expressed as
Ge (agg) = ecos?d (agg) (2)

where ¢ determines the element gain, and € = 2(2¢ + 1) is a
normalization term to satisfy conservation of energy.

LG denotes the path loss for the (c, s)th path, and we adopt
5G path loss model to represent LEr as [21]

C,8
47
ng = —2010g10 <A>

_ ]_On<1 + b(f ;f0)>10g10(dc,s) - Xa'm (3)
0

where \ is the carrier wavelength. n, b and fy denote model
parameter, reference frequency and the path loss exponent,
respectively. d. s denotes the ray length of the (c, s)th scatter
path and X,, ~ CN(0,0,2) is a shadow factor.

The array response a(¢,«) for n; x ng UPA can be
expressed as

a(¢, o) =

. €j27rd(xsinoc+y singcosa)/A
ej27rd((n1—1)sma+(n2—l) sin¢>cosa)/)\] )

where 0 <z < n; —1and 0 < y < ng — 1. d represents the
antenna spacing.
Similarly, G1,,g can be expressed as

(¢LOS7 aLoS)
o)

where G, (af S) represents the feed pattern of RIS elements
in the LoS direction. LL g stands for the path loss of the LoS
link. 7 follows the un1f0rm distribution n ~ U[0, 27]. qu s
(af oS) and (bL oS (aL C)S) denote the azimuth (elevation) AoA
at the AP and the azimuth (elevation) AoD at the RIS in the
LoS direction, respectively.

Following [19], we consider that the RIS are sufficiently
close to the low-mobility user in the indoor office environment,
so that a clear LoS link exists between RIS and user. The
LoS-dominated channel & can be represented as

=./Gc(a")LTeIa(¢p",a") (6)

where G.(a") represents the radiation of RIS. L” is the path
loss. " (a™) denotes the azimuth (elevation) AoA at the RIS.

GLOS = Ge (aLoS) LLoS e’ (¢LOS’ OéLoS)

B. Problem Formulation

Let § = [ejgl, elf2 ejeN]T € CV denotes the reflect-
ing vector at the RIS, where 0;(i = 1,2,..., N) represents
the phase shift at the i-th RIS element. Assuming Q pilot
slots are used for channel estimation, the received signal
yg(¢=1,2,...,Q) at the AP can be expressed as

yq = G diag(04)hsq + wy
= G diag(h)0sq + wqg @)

where s; and 6, are the g-th transmitted pilot and g-th
reflecting vector, respectively. wy ~ CN(0,0,21)) is white
Gaussian noise.

We define H = G diag(h) € CM*N a5 the cascaded chan-
nel. Suppose s; = 1 for each pilot, we can obtain the M x @
observation matrix Y = [y1,12,...,y¢]

Y=HO+ W ®)
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where ® = [01,0,... CN*Q@ and W =
[wl, W, ..., wQ] S CMXQ.

The inverse estimation of (8) is ill-posed because the
problem is underdetermined with Q < N. Since H has sparsity
in a specific transform domain ¢ for mmWave Massive MIMO
communication with limited scatters, e.g., angular domain.
Let H = ng where ¢ denotes the sensing matrix and H
is a sparsity matrix with £ < M x N non-zero elements.
The straightforward formulation of CS reconstruction can be
expressed as [22]

,0@] S

win [, st |[Y - HO> <¢ ©)
where £ bounds the amount of noise in the data. The sub-
script p is usually set to 1 or 0, characterizing the sparsity
of H . Numerous methods have been proposed for solving the
optimization problem of (9), e.g., convex optimization method
and matching pursuit method based on greedy algorithms.
However, there is no explicit theory to generate the sparse
channel representation H with the least non-zero entries
for complex communication environment [23]. Moreover, the
mathematical model-based cascaded channel estimation algo-
rithm, e.g., LS and CS, required the accurate prior knowledge
of reflecting vector @, which is not available for perfect phase
configuration in practice [24]. Considering the phase quantiza-
tion error of RIS elements, the actual reﬂectmg vector can be
expressed as 6 = [6]91 ¢i02 ...,eJGN] and 0; = 0; + 0;(i =
1,2,...,N), where 0; ~ 71[ 27b7,27%7] and b represent
the phase quantization error and quantization bits, respectively.

III. PROPOSED METHOD

In this section, we first construct a general dataset to make
the neural network compatible with different pilot lengths. And
then the ResU-Net is proposed to recover the high-dimensional
cascaded channel matrix from limited pilot overhead.

A. Data Preprocessing

For general end-to-end channel estimation models, the
received pilot signal is directly used as the input of network.
When we adjust the pilot length for different communication
scenarios, the number of neural node of input layer needs to
be correspondingly changed to adapt the pilot length. Hence,
the trained model is not flexible for various set of commu-
nication system. Motivated by [14], a linear layer is used to
boost the dimension CM* of the observation matrix Y to
the CM*N where the weights of linear layer are fixed and are
set to the transpose of reflecting vector ©. In fact, the operation
of linear layer with fixed weight is equivalent to the matrix
multiplication. Consequently, we denote received pilot signal
proxy Y = Y .07 as the input of the network. The received
pilot signal and the cascaded channel are normalized by the
maximum absolute value of their elements. We treat Y and H
as two-channel image with M x N x 2, where each channel
is the real and imaginary part of complex data, respectively.

B. Network Architecture

In the data preprocessing stage, we boost the dimen-
sion of pilot matrix through mathematical operation, which
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Fig. 2. The network architecture of ResU-Net.

increases the redundant features and computational complexity
of the network. Consequently, we design an encoder-decoder
architecture to recover the desired cascaded channel matrix
from the feature map compressed by encoder. In the regu-
lar encoder-decoder architecture, e.g., Autoencoder (AE), the
reconstruction performance of high-dimensional data is lim-
ited. Fig. 2 shows the proposed ResU-Net architecture, where
the semantic information at different scales is fused by design-
ing skip connections between encoder and decoder, so that
ResU-Net can reduce information loss in the process of feature
compression.

In the stage of encoder, E encoder blocks are used to com-
press the input data with dimensions of M x N X 2 into
M/2F x N/2P x 512, E < |logaM | , where each encoder
block consists of a convolutional block and a residual block.
Each convolutional block compose of a convolutional layer
with stride 2 to downsample the feature map, an instance nor-
malization layer and a LeakyReLU layer. The number of filter
fe=64x2"1 (i=1,2,...,4) and f¢ = 512 when i > 5
for convolutional layer, where i denotes the sequence number
of the encoder block from outer to inner. The deeper convo-
lutional network is, the more high-level semantic information
of input data can be extracted. ResNet is widely used as the
backbone of the deep network, and the basic idea of residual
learning can be expressed as F(x) = R(x) + x, where R(x) rep-
resents the output after convolution operation and z denotes
the initial input data. The residual learning introduces shortcut
connections to avoid the vanishing gradient problem. Hence,
we add residual blocks into the U-Net architecture to improve
the feature extraction ability of the network.

The decoder of the ResU-Net is symmetric with the encoder,
where the feature map is upsample by transposed convolution
with stride 2. E decoder blocks are used to recover the com-
pressed feature with dimensions of M /2% x N/2F x 512
into M x N x 2, where each decoder block consists of
a transposed convolutional block and a residual block. The
number of filter of transposed convolutional layer is set to
fid = 512/2°1 (i = 1,2,...,4), where i denotes the
sequence number of the decoder block from inner to outer.
The filters of last transposed convolutional layer is set to 2 to
satisfy the output with two-channel. To release the checkboard
artifacts when feature map is upsampled, we adopt 4 x 4 con-
volutional kernel. Different from the AE, the low-level feature
maps of encoder and high-level feature maps of decoder are
concatenated by skip connection in the ResU-Net, which help
the decoder to reconstruct more accurate cascaded channel
and accelerate the convergence of network. In fact, channel

Authorized licensed use limited to: China University of Petroleum. Downloaded on August 23,2024 at 02:50:44 UTC from IEEE Xplore. Restrictions apply.



XIE et al.: DEEP CS-BASED CASCADED CHANNEL ESTIMATION FOR RIS-AIDED COMMUNICATION SYSTEMS 849

estimation is a low-level regression task, where the low-level
senmantic information extracted from shallow convolutional
layer can facilitate the network to complete the final task.

C. Network Training

We use normalized mean squared error (NMSE) as the
performance evaluation metric of channel estimation, which
can be represented as

NMSE = E{||H — H]|[%/||H|I} | (10)
where H is the estimated cascaded channel, and | |||z denotes
the Frobenius norm.

Although Lo loss function is directly related with the NMSE
performance metric, L1 loss has faster convergence than Lo
loss in practice [25], where Ly = E{|H — f(Y)|} and f(Y)
represents the output of ResU-Net. In the training process, we
use the cosine learning rate decay schedule to achieve stable
convergence of network. The learning rate 7; at the i-th epoch
can be represented as

1 .
N = 27]0(1—&-005(;_77)), 0<i<T

where 79 and [ represent initial learning rate and the total
number of epochs, respectively.

(1)

IV. NUMERICAL SIMULATION

In our simulation, M =8 x §, N=16 x 16, E =5, =150
and ng = 0.02. The coordinates of AP, RIS and user are
set to (IAP, yAP’ ZAP) — (O, 25, 2)7 (IRIS’ yRIS’ zRIS)
(40,50,2) and (zUF yUE ,UE) — (38 48,1). C follows the
Poisson distribution C' ~ max{P()p),1}, where A, = 1.8
for 28 GHz frequency band [18], and S. ~ U[1,30] [26].
We adopt the path loss model of InH Indoor Office, where
n =319, b=0.06, 0 =829 dB and fy = 24.2 GHz for
NLoS component, while n = 1.73, b = 0.06 and o = 3.02 dB
for LoS component [21]. We generate 20000 channel samples,
which are randomly divided into training, validation and test
datasets by the ratios of 60%, 20%, and 20%, respectively. In
training phase, the SNR varies from 0 dB to 30 dB with an
interval of 5dB and the pilot length of training set is set to
Q = 32. The trained model can be tested for different SNR
and Q. The network is optimized by Adam optimizer and batch
size is set to 64, where the coefficients to compute gradient are
set to (B1, B2) = (0.9,0.99). All simulations are performed on
the Xeon Silver 4210R CPU and Nvidia TITAN RTX GPU.

We compared the NMSE performance of proposed ResU-
Net with conventional LS estimator, CS algorithm, i.e., Oracle
LS and OMP, and other DL model, i.e., plain CNN, AE and
U-Net. Fig. 3 shows ResU-Net outperform the other method
in the most of SNR ranges. In the channel estimation, neural
network can be regarded as a universal approximator to real-
ize the mapping from pilot signal to channel matrix. Since the
estimation error of LS is the inverse of noise, LS estimator
can obtain ideal performance under the high SNR, while the
approximation error of neural network will be larger. Since the
sparity k is variable and relatively large in our clustered MIMO
channel model, we set sparity k& = 400 in OMP algorithm for

LS,Q=384

10 —<—OMP,Q=64

—p— Oracle LS,Q=64

5 CNN,Q=32
—&— AutoEncoder,Q=32

—+— U-Net,Q=32

0 " ResU-Net,Q=32

o T TR

-10 -5 0 5 10 15 20 25 30
SNR(dB)

NMSE (dB)

Fig. 3. NMSE vs. SNR for different algorithm.

TABLE I
COMPARISON OF COMPUTATION TIME ON CPU AND GPU

Algorithm pilot length(Q) CPU(ms) GPU(ms)
LS 257(384) 22.6(30.3) /
Oracle LS 64(128) 10.8(12.5) /
OMP 64(128) 1583(1812) /
CNN 32(--+) 463 6.16
AutoEncoder 32(--+) 40.1 1.75
U-Net 32(--+) 52.1 1.82
ResU-Net 32(--+) 95.7 4.27

better NMSE performance. However, the estimation accuracy
of CS is limited even if we increase the number of iterations.
Due to the lack of skip connection, the decoder of AE can-
not use the low-level features obtained by the encoder, so it
is difficult to recover accurate cascaded channel. ResU-Net
fuses feature maps of different scales by skip connection and
makes the learned features more refined by stacking residual
blocks. Consequently, ResU-Net can obtain superior NMSE
performance under a few pilot overhead.

Table I shows the computation time of channel estimation
module for different algorithm, which is obtained by averag-
ing 200 times running. The computation time of all algorithms
is compared in Python3.7, where PyTorch 1.10 is used as the
development frame of deep learning. The oracle LS algorithm
can be fast performed due to the known supports of H , while
OMP based on iterative optimization strategy takes a lot of
computation time. As a linear estimator, the large pilot over-
head increases the computation time of LS estimator. Since the
size of feature map is always M x N in CNN, the computation
of network bring high computational complexity. Compared
with AE and U-Net, the computational complexity of ResU-
Net is relatively large due to introduce more network layers.
The computation time of LS estimator and CS algorithm will
increase with the pilot length Q. However, the computation
time of proposed model is the same for different Q since the
dimension of input data has been fixed during data prepro-
cessing. Meanwhile, the computation time of DL model can
be greatly reduced by utilizing the parallel computing ability
of graphics processing unit (GPU).

In Fig. 4, we compared the NMSE performance of differ-
ent algorithm for different pilot lengths. With the increase
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Fig. 4. NMSE vs. pilot overhead () when the SNR is set to 10 dB.
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Fig. 5. NMSE vs. SNR for different quantization bits b.

of Q, the performance of CS will be improved, while the
performance variation of encoder-decoder architecture is not
obvious for different pilot lengths. In Fig. 5, the NMSE
performance of mathematical model-based conventional chan-
nel estimation algorithm significantly reduced for phase shift
with quantization error. Since the neural network is robust for
some disturbances of input data, e.g., quantization noise, and
the downsampling of encoder can reduce the risk of overfit-
ting, ResU-Net is superior to the LS estimator and the oracle
LS algorithm for phase shift with different quantization bits b.

V. CONCLUSION

Considering the high pilot overhead of cascaded chan-
nel estimation for RIS aided Massive MIMO communica-
tion system, we proposed a DCS-based channel estimation
scheme, where ResU-Net is designed to reconstructed the
high-dimensional cascaded channel. By introducing the skip
connections to fuse the features of different scales, the NMSE
performance of ResU-Net outperforms other deep neural
network and conventional channel estimator. The general-
ization and robustness of ResU-Net have been verified for
different pilot lengths and quantization bits.
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