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Abstract— A multi-scale attention based channel estimation
framework is proposed for reconfigurable intelligent surface
(RIS) aided massive multiple-input multiple-output systems, in
which hardware imperfections and time-varying characteristics
of the cascaded channel are investigated. By exploiting the
spatial correlations of different scales in the RIS reflection
element domain, we construct a Laplacian pyramid atten-
tion network (LPAN) to realize the high-dimensional cascaded
channel reconstruction with limited pilot overhead. In LPAN,
we leverage the multi-scale supervision learning to progres-
sively capture the spatial correlations of the cascaded channel,
where the attention mechanism based dual-branch architecture
is designed. To balance network performance and complexity
of LPAN, we further propose a lightweight LPAN-L archi-
tecture. In LPAN-L, the partial standard convolutional layers
are decomposed into the group convolution, dilated convolution
and point-wise convolution, which forms a sparse convolutional
filter set to extract the channel feature with less computation
cost. Furthermore, we leverage parameter sharing and recursion
strategy to reduce the space complexity. Moreover, a selective
fine-tuning strategy is developed to realize the domain adaption.
Simulation results show that the proposed LPAN can achieve
higher estimation accuracy than the existing estimation schemes,
while the LPAN-L architecture with a close performance to LPAN
efficiently reduces the network complexity. The code is available
at https://github.com/Holographic-Lab/LPAN.

Index Terms— Reconfigurable intelligent surface, channel esti-
mation, multi-scale attention, hardware impairments.

I. INTRODUCTION

CONSIDERING the enormous communication bandwidth
available at the high frequency band, millimeter wave
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(mmWave) has been regarded as a promising communica-
tion frequency for the future wireless communication system.
However, the significant path loss of high-frequency electro-
magnetic waves limits the coverage of mmWave communica-
tion [2]. The intuitive solutions are to deploy denser access
points (APs) or to integrate more antennas into communica-
tions equipment, e.g., massive multiple-input multiple-output
(MIMO) communication, which will result in expensive hard-
ware cost and much energy consumption. Fortunately, the
reconfigurable intelligent surface (RIS), comprised of densely
packed sub-wavelength units, provides new possibility to
enhance mmWave communication with low cost and energy
[3]. The electromagnetic response of each RIS unit is tunable
by adjusting the size or spatial arrangement. By utilizing the
unique electromagnetic properties, RISs have been applied
in various communication scenarios to improve the system
performance, e.g., wireless power transfer, mobile edge com-
puting, and multi-hop Terahertz communications [4]. The most
promising applications of RIS depend on the accurate channel
state information to design the passive beamforming of RIS.
However, the channel estimation is the key challenge for RIS-
aided massive MIMO communication system [5].

Since the passive RIS is not equipped with radio fre-
quency (RF) chains, channel estimation can only be carried
out at the base station (BS) or the user equipment (UE).
It has been verified in [6] that the performance gain of
the RIS is superior to the traditional relay technology only
when there are a large number of reflection elements on
RIS. The increasing number of reflection units will increase
the dimension of BS-RIS-UE cascaded channel matrix cor-
respondingly. However, high-dimensional channel estimation
requires more pilot overhead, which will significantly reduce
communication spectrum efficiency. Besides, the hardware
imperfection of communication devices also retrograde the
accuracy of channel estimation in practical communication
systems, i.e., the hardware impairments (HWIs) at the RIS and
terminals [7].

A. Prior Works

To reduce the pilot overhead of channel estimation for
RIS-aided communication system, many works have provided
various design ideas, e.g., the semi-passive channel estimation
by equipping with dedicated sensing devices in RIS [8],
[9], [10], the compressed sensing (CS)-based sparse channel
estimation by exploiting the sparsity of RIS channel [11], [12],
[13], and the deep learning (DL)-based intelligent channel
estimation scheme [15], [18], [19].
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1) Semi-Passive Channel Estimation Schemes: In the
semi-passive channel estimation scheme, limited RF chains are
mounted with the RIS to process the received signal, so the
BS/UE-RIS channel can be separately estimated [5], which
can effectively reduce the complexity of channel estimation.
In [8], the cascaded channel estimation was divided into
direction-of-arrival (DOA) and path gain estimation, where the
DOA estimation was implemented by using the RF chains.
The work of [9] proposed the sparse Bayesian learning-based
channel reconstruction method and design an efficient data
transmission strategy. In [10], an algebraic algorithm was
designed to recover the multipath parameters of the BS/UE-
RIS channel. However, it is necessary to configure cables
or power supplies for the semi passive channel estimation,
which limits the diversity of RIS application scenarios and
also increases the energy consumption.

2) Sparse Channel Estimation Schemes: Since wireless
channels are often sparse in a certain transform domain,
e.g., angular domain for the high-frequency communication
[11], [12], [13], the CS has been widely used in the RIS
channel estimation. The authors in [11] used the properties
of Katri-Rao and Kronecker product to derive a sparse repre-
sentation of cascaded channels. In [12], the double-structured
orthogonal matching pursuit (OMP) was proposed by utilizing
the common angle domain sparsity of multi-user cascaded
channel. In [13], a two-step channel estimation scheme
was proposed, in which the mmWave channel sparsity and
multi-user correlations are leveraged to reduce the required
pilot overhead. The CS-based channel estimation need found
the pure sparse representation to avoid the grid mismatch,
and then uses iterative method to approximate the solution.
However, the authors in [14] believes that there is no theory
can accurately prove that the CS model can obtain the most
sparse representation of the channel especially for dynamic
sparsity channel in the complex communication scenarios.

3) Intelligent Channel Estimation Schemes: By leverag-
ing the non-linear mapping ability of neural network, the
channel estimation model can be constructed to realize the
mapping from pilot signal to channel matrix. The authors
in [15] first estimates a initial channel matrix using (least
square) LS algorithm, and then obtains the accurate channel
matrix using convolutional neural network (CNN). However,
in this LS pre-estimation based channel estimation schemes,
the required minimum pilot overhead was not reduced, which
was equal to the LS estimation. Single image super-resolution
(SR) reconstruction technologies provided another feasible
framework for wireless channel estimation, whose theoreti-
cal foundation is the natural correlations of channel matrix,
e.g., the correlations of time-frequency and spatial domain. In
[16], super-resolution CNN (SRCNN) was applied to recover
the complete time-frequency channel from partial channel of
pilot subcarriers. However, the reconstruction performance of
SRCNN was limited due to the simple network architecture.
In [17], enhanced SR network (EDSR) was used to further
improve the channel estimation accuracy by introducing the
residual learning. Since the metamaterial units of RIS are
generally integrated closely, the channels at the neighboring
units are highly correlated in spatial domain. Hence, the

design ideas in [16] and [17] have been extend to the RIS-
aided communication system. In [18], the low-dimensional
cascaded channel matrix was obtained by opening partial RIS
elements firstly, and then SRCNN was applied to recover the
high-dimensional cascaded channel from the low-dimensional
cascaded channel matrix. The work of [19] considered the part
of cascaded channel estimation based on EDSR, where some
active elements were equipped with RIS to acquire the initial
channel information.

B. Motivations and Contributions

Against the above background, there are two main chal-
lenges for the existing channel estimation schemes based on
the SR network. Firstly, for the SR model proposed in [16],
[17], [18], and [19], the channel extrapolation was realized in
merely one upsampling step, e.g., the pre-upsampling in the
input layer of SRCNN [16], [18] or the post-upsampling in
the output layer of EDSR [17], [19], which restricts the recon-
struction precision of high-dimensional channel estimation due
to the larger upscaling factor. Secondly, in the two-stage SR
estimation model, the coarse low-dimensional channel matrix
obtained by limited pilot overhead is used as the input of the
network, which makes the reconstruction performance of the
complete channel matrix depend on the accuracy of initial
channel estimation. In particular, the imperfect hardware at the
RIS and terminals will significantly reduce the initial channel
estimation performance of the SR network due to the huge
noise imposed on the input data.

Motivated by the above challenges, we propose a multi-scale
attention based cascaded channel estimation framework for the
RIS-aided multi-user massive MIMO communication system
with the practical HWIs. The main contributions can be
summarized as follows.
• We propose a Laplacian pyramid attention network

(LPAN) to progressively reconstruct the cascaded channel
matrix in a coarse-to-fine fashion, which can better cap-
ture the spatial correlations in high-dimensional reflection
element domain of RIS. With the increase of network lay-
ers, the representation of the neural network will contain
more high-frequency information. Hence, we introduce
residual learning to fuse the high-frequency and low-
frequency features of cascaded channel by designing the
dual-branch architectures, i.e., feature extraction branch
(FEB) and channel reconstruction branch (CRB).

• We integrate the attention mechanism into FEB in the
LPAN, which effectively improve the channel feature
learning ability of each spatial scale. Compared with the
existing work [20] that applied the attention mechanism
for the massive MIMO channel estimation fully following
the Squeeze-and-Excitation Network (SENet) in com-
puter vision [21], we rethink the specific characteristic
of wireless channels and further design the improved
channel attention mechanism. Furthermore, we merge the
attention map of different spatial-scale channel matrices
in the pyramid network, which are more suitable for
the “divide-and-conquer” policy in the large-scale array
communication system.
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• We construct the lightweight version of LPAN, which
is termed as LPAN-L, to reduce the parameters and
the computational complexity of the proposed LPAN by
exploiting efficient convolution operations and network
backbone. Specifically, we combine group convolution,
dilated convolution and point-wise convolution layers
to replace the standard convolutional layer in the clas-
sic CNN architecture. Furthermore, the recursion design
within each pyramid level and parameter sharing strategy
across pyramid levels is leveraged to reduce the net-
work parameters. Moreover, by leveraging the multi-scale
pyramid architecture of LPAN-L, we develop a selective
fine-tuning based transfer learning framework to realize
the cross-domain adaption of the LPAN-L model.

• Our numerical results show that the channel estima-
tion performance of the proposed LPAN is superior to
the existing classic algorithm and other DL models.
Compared with LPAN, the further optimized LPAN-L
can reduce approximately half of the complexity, while
achieving a close performance to LPAN. The gener-
alization and robustness of the LPAN-L are verified
under different system setups, i.e., different degrees of
HWIs and user mobility. The proposed transfer learning
framework can be applied the LPAN-L model into differ-
ent communication scenarios with limited target domain
samples and training cost.

Note that compared with the conference version [1], this
work further increases the contributions in terms of the sys-
tem modeling and the network architecture design. Firstly,
in the system model and problem formulation, we consider
more practical RIS assisted mmWave systems, in which both
hardware imperfections of the RIS/terminals and time-varying
channel characteristics are investigated. Secondly, we intro-
duce the attention mechanism into the Laplacian pyramid
network to enhance the network representation ability and
further exploit a lightweight LPAN-L architecture. Thirdly,
we develop a transfer learning framework to deal with the
domain mismatch problem in the practical deployment of the
proposed LPAN-L model.

C. Organizations and Notations

1) Organizations: The remainder of the paper is organized
as follows. Section II introduces the system model of RIS-
aided multi-user mmWave communication system with HWIs.
In Section III, we propose the LPAN to realize the progressive
reconstruction of cascaded channel. In order to reduce the
network complexity in the progressive reconstruction frame-
work, we further design the low-complexity LPAN-L model
in Section IV. Section V and VI provide numerical results and
conclusions, respectively.

Fig. 1. The three-dimensional RIS-aided mmWave communication environ-
ment with random scattering elements.

2) Notations: Lower-case and upper-case boldface letters a
and A denote a vector and a matrix, respectively; AT , AH

and A† denote the transpose, conjugate transpose, and pseudo
inverse of matrix A, respectively; a∗ denotes the conjugate of
complex number a; diag(a) denotes the diagonal matrix with
the vector a on its diagonal; || � ||F denote the Frobenius norm;
⌊x⌋ denotes the smallest integer that is greater than or equal
to x. Moreover, ⊙ and ⊗ denotes the Hadamard product and
convolution, respectively. Ia is the a× a identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first model the clustered mmWave chan-
nel for RIS-aided multi-user massive MIMO communication
system. Then, we formulate the uplink channel estimation
problem and present the challenge for classic channel esti-
mation scheme, where the hardware impairments at the RIS,
transmitter, and receiver are considered.

A. Channel Model

As shown in Fig. 1, we consider the uplink of the RIS-aided
multi-user mmWave communication system, where K single-
antenna UEs at the x-y plane simultaneously communicate
the BS with M = M1 × M2 uniform planar array (UPA)
antennas via the RIS with N = N1 ×N2 reflection elements
at the x-z plane. Let G and hk represent the RIS-BS channel
and the UEk-RIS channel, respectively. Following the 3rd
generation partnership project (3GPP) standard [22] and the
channel modeling in [23], the clustered statistical MIMO
channel model is used to capture the dynamic variations of
the environmental objects, e.g., a large number of randomly
distributed scattering elements between the terminals and the
RIS. The RIS-BS channel G = GNLOS + GLOS ∈ CM×N
can be represented as in (1), shown at the bottom of the
page, where C̄ and S̄c denote the total number of clusters and
scatters in the c-th cluster between BS and RIS for non-line
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of sight (NLOS) component, respectively. The parameter γ̄ =√
1∑C

c=1 Sc
is a normalization factor in the clustered channel

model. The parameter β̄c,s ∼ CN (0, 1) is the propagation
path gain of the scatter (c, s). The parameter Ge

(
φGt
c,s

)
=

2(2ξ+1)cos2ξ
(
φGt
c,s

)
denotes the RIS elements pattern for the

scatter (c, s), where ξ determines the gain of the element [24].
The path loss LGt

c,s in the (c, s)-th scatter can be expressed
as [25]

LGt
c,s = −20log10

(
4π
λ

)
− 10n

(
1 + b0

(
fc − f0
f0

))
log10 (dc,s)−Xσx

,

(2)

where λ, n0, b0, fc and f0 stand for the carrier wavelength,
path loss exponent, model parameter, carrier and reference
frequency, respectively. dc,s represents the ray path length of
the (c, s)-th scatter and Xσx

∼ CN (0, σx2) is a shadow factor.
ϕGt
c,s (φGt

c,s) and ϕGr
c,s (φGr

c,s ) represent the azimuth (elevation)
angle of departure at the RIS, and the azimuth (elevation)
angle of arrival at the BS for the (c, s)-th path, respectively.
The azimuth departure angles (ϕGt

c,s, s = 1, . . . , S̄c) follow the
conditional Laplacian distribution ϕGt

c,s ∼ L
(
ϕGt
c , σϕ

)
, where

ϕGt
c follows a uniform distribution ϕGt

c ∼ U [−π/2, π/2]
and σϕ denotes a constant angular spread [26]. Similarly, the
elevation departure angles are given by φGt

c,s ∼ L
(
φGt
c , σφ

)
,

where φGt
c,s ∼ U [−π/4, π/4] and σφ denotes angular spread.

a (ϕ, φ) ∈ CN×1 and b (ϕ, φ) ∈ CM×1 denote the array
response at the RIS and the BS, respectively. Specifically, the
UPA array response a (ϕ, φ) at the RIS can be represented as

a (ϕ, φ) =
[
1, · · · ej2πd(xsinφ+y sinϕ cosφ)/λ,

· · · , ej2πd((N1−1)sinφ+(N2−1) sinϕ cosφ)/λ
]T
,

(3)

where 0 ≤ x ≤ N1 − 1 and 0 ≤ y ≤ N2 − 1. The scalar d
denotes the antenna spacing.

Similarly, the UEk-RIS channel hk = hkNLOS + hkLOS ∈
CN×1 can be represented as

hk =
√
Ge

(
φr,kLOS

)
Lr,kLOSa

(
ϕr,kLOS, φ

r,k
LOS

)
︸ ︷︷ ︸

hk
LOS

+ γ̂

Ĉ∑
c=1

Ŝc∑
s=1

β̂c,s

√
Ge

(
φr,kc,s

)
Lr,kc,sa

(
ϕr,kc,s , φ

r,k
c,s

)
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hk
NLOS

, (4)

where Ĉ and Ŝ represent the total number of clusters
and scatters in the c-th cluster between the RIS and the
UEk, respectively. The normalization factor γ̂ satisfies γ̂ =√

1∑Ĉ
c=1 Ŝc

and β̂c,s ∼ CN (0, 1) denotes path gain. The

parameters Ge
(
φr,kc,s

)
and Lr,kc,s represent the RIS element

gain and path loss, respectively. ϕr,kc,s (φr,kc,s ) denotes the
azimuth (elevation) angle at the RIS.

Based on above statistical MIMO channel model, we further
consider RIS assisted high-mobility communication scenarios,
in which UEk is moving with speed v at the x-y plane. Due
to the severe Doppler effect caused by the user mobility, the
time-varying UEk-RIS channel hk,n at the n-th time block can
be expressed as

hk,n = ζr,kLOSa
(
ϕr,kLOS, φ

r,k
LOS

)
ej2π(nTsf

d
LOS−fcτLOS)︸ ︷︷ ︸

hk
LOS

+ γ̂

Ĉ∑
c=1

Ŝc∑
s=1

β̂c,sζ
r,k
(c,s)a

(
ϕr,kc,s , φ

r,k
c,s

)
ej2π(nTsf

d
c,s−fcτc,s)

︸ ︷︷ ︸
hk

NLOS

,

(5)

where Ts is sampling period, ζr,ku =
√
Ge

(
φr,ku

)
Lr,ku with

the indicator u ∈ {LOS, (c, s)}. Parameters τu and fdu denote
the delay and Doppler frequency shift of the LOS path or
scatter (c, s) path, respectively, in which fdu is given by

fdu = vcos(ϕkn)cos(φkn)/λ, (6)

where ϕkn (φkn) denote the azimuth (elevation) angle at UEk
at the n-th time block, respectively. The maximum Doppler
frequency is fdmax = vfc/c, in which c is the speed of light.

B. Problem Formulation

By turning off the all reflection elements for RIS-
aided communication system, the direct channel estima-
tion from the UE to the BS is similar with conventional
communication system. As such, we mainly focus on the
high-dimensional cascaded channel estimation problem. Let
θ = [β1e

jθ1 , β2e
jθ2 , · · · , βNejθN ]T ∈ CN×1 denote the

RIS reflecting coefficients, where θi(i = 1, 2, · · · , N) and
βi ∈ {0, 1} denote the phase shift and the ON/OFF state
of the i-th RIS element. We consider practical restrictions
for ON/OFF reflection modes of the RIS [27], which can be
expressed as

βi =

{
1− ϵ1 ON
0 + ϵ0 OFF,

(7)

where non-negative constants ϵ1 and ϵ0 model these realistic
implementation errors in ON and OFF modes, respectively.
Except the amplitude control error of reflection elements, there
is the reflection phase error due to the intrinsic hardware
imperfection of the passive reflectors, e.g., the reflection
phase quantization noise θ̄i [28]. Specifically, the practical
reflecting phase shift θ̂i satisfies θ̂i = θi + θ̄i, in which
θ̄i ∼ U [−2−bπ, 2−bπ] and b denotes the phase quantization
bits. In the q-th (q = 1, 2, · · · , Q) pilot slots, the received
signal yq ∈ CM×1 at the BS is given by

yq =
K∑
k=1

Gdiag(θq)hksq,k + wq

=
K∑
k=1

Gdiag(hk)θqsq,k + wq, (8)
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where θq = [β1,qe
jθ̂1,q , β2,qe

jθ̂2,q , · · · , βN,qejθ̂N,q ]T ∈ CN×1,
sq,k denotes the pilot sent by the k-th UE with E[sq,ks∗q,k] =
pk, and wq ∼ CN (0, σ2

nIM ) stands for Gaussian noise. Let
Hk = Gdiag(hk) ∈ CM×N be denoted as the cascaded
channel.

We consider the residual hardware impairments at the BS
and the UE due to the non-ideality of the hardware in practical
communication system, which can be modeled as the additive
Gaussian distribution [7]. Moreover, the multiplicative phase
drift εq = ejψq caused by the local oscillator at the receiver
is also considered, in which ψq ∼ N (ψq−1, δo) follows the
Wiener process and δo denotes the oscillator quality. In this
case, we rewrite (8) as

ỹq = εq

K∑
k=1

Hkθq(sq,k + ηtq,k) + wq + ηrq , (9)

where ηtq,k ∼ CN (0, ρ2
t,kpk) denotes the distortion of

transmitted signal caused by HWIs at UEk. ηrq ∼
CN (0, ρ2

rpr) denotes the HWIs at the BS with pr =∑K
k=1

(
pkIM ⊙ (Hkθq)(Hkθq)H

)
. The ρt,k and ρr stands

for the error vector magnitudes (EVM) at UEk and BS [27],
respectively.

Define s̃q,k = sq,k + ηtq,k and w̃q = wq + ηrq . After Q
time slots of pilot transmission, we can collect the M × Q
observation matrix Y = [ỹ1, ỹ2, · · · , ỹQ] at the BS, which is
given by

Y =
K∑
k=1

HkθsHk + W, (10)

where sk = [s̃k,1, s̃k,2, · · · , s̃k,Q] ∈ CQ×1 and sHk sk = pkQ.
The joint noise matrix W = [w̃1, w̃2, · · · , w̃Q] ∈ CM×Q.

The orthogonal pilot transmission strategy is widely used
to realize the multi-user channel estimation based on DL
framework [15], i.e., sHk1sk2 = 0 for 1 ≤ k1, k2 ≤ K and
k1 ̸= k2. Consequently, we can separate the received pilot
signal of different users at the BS, which can be expressed as

Ỹk =
1
pkQ

Ysk = Hkθ + W̃k, (11)

where W̃k = 1
pkQ

Wsk.
In the classic LS estimator [27], the estimated cascaded

channel can be expressed as

Ĥk = Ỹkθ
†, (12)

where θ† = θH
(
θθH

)−1

.
Remark 1: Due to the constraint of full-rank condition

in (10), the required pilot overhead satisfy Q ≥ N for the
conventional LS estimator, which causes intractable training
overhead for the RIS with a large number of reflection
elements. An alternative is to take advantage of the sparsity
of H in a specific transform domain φ. For example, in the
angular domain, the channel can be represented as H = φHa,
where Ha is a sparsity matrix with k ≪ M × N non-zero
elements. However, the correlation of the wireless channel in
practical communication scenarios is hardly to be confined to
a single transform domain φ that fully represent the internal

sparse structure of H [14]. In addition, the HWIs of RIS and
communication devices will significantly affect the channel
estimation performance for the mathematic model-based deter-
ministic schemes.

III. MULTI-SCALE ATTENTION-AIDED LAPLACIAN
PYRAMID ATTENTION NETWORK (LPAN)

In this section, we first design the dataset construction for
the progressive channel estimation scheme. Then, we present
the channel attention mechanism, Laplacian pyramid frame-
work, and the detailed LPAN architecture with dual branch.
Lastly, we design the multi-scale supervised training method
to realize the cascaded channel reconstruction under different
scales.

A. Dataset Construction

The basic idea of dataset construction follows the SR-based
channel estimation scheme, which can be divided into two sub-
stage. In the first stage, we utilize the conventional channel
estimator to obtain the partial channel matrix with limited
pilot overhead. Then a SR network is designed to recover
the complete channel matrix. In contrast to the existing SR-
based channel estimation schemes, we proposed a progressive
channel reconstruction scheme to better capture the spatial
correlations in the cascaded channel, where the extrapolation
of channel matrix is carried out under different scales.

In the channel pre-estimation stage, we adopt the LS pre-
estimation presented in (12) to obtain the low-dimensional
partial cascaded channel matrix ĤP

k ∈ RM×P . Specifi-
cally, we select P =

{
1,Γ + 1, · · · , (P − 1) × Γ +

}(
P =

⌊
N−1

Γ + 1
⌋)

RIS elements with the interval Γ = 2S(0 ≤
S ≤ log2N) as a subset of whole RIS elements, and then
estimate the partial cascaded channel matrix by controlling the
reflection vector of subset elements. We resort to the discrete
Fourier transform (DFT) protocol in [30] to control the reflec-
tion vector of subset elements in the channel estimation stage,
i.e., θq = [1, · · · , θi=q = e−j2π(q−1)(i−1)/Q, · · · , θi=P =
e−j2π(q−1)(P−1)/Q]T at the q-th slot. Due to the phase
quantization noise and hardware imperfection, the prac-
tical RIS reflection coefficients are given by θq =
[β1, · · · , θi=q = βie

−j(2π(q−1)(i−1)/Q+θ̄i), · · · , θi=P =
βP e

−j(2π(q−1)(P−1)/Q+θ̄P )]T at the q-th slot for the dataset
construction.

In the dataset construction, we consider two cases of
quasi-static channel and time-varying channel estimation. For
the quasi-static channel channel estimation, the flat-fading
channel Hk remains approximately constant within each
frame. Hence, the estimated channel at the pilot block can
be used into the data transmission stage in the same frame.
In this case, we define H̄P ∈ RM×P×2 as the input data of
channel extrapolation network, and H̄P

m,p,1 = Re(ĤP) and
H̄P
m,p,2 = Im(ĤP)(1 ≤ m ≤ M), as the real and imaginary

components, respectively. We design the label group H̄ =
(H̄1, H̄2, · · · , H̄S) to achieve the progressive reconstruction
of the cascaded channel, where H̄S represents the complete
cascaded channel matrix and H̄s ∈ RM×2sP×2(1 ≤ s ≤ S)
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Fig. 2. The specific frame structure for time-varying channel estimation.

Fig. 3. The improved channel attention block.

is the spatial sampling with scaling factor s of the complete
cascaded channel.

For the time-varying channel estimation, the channels of
consecutive time blocks within a frame may vary due to the
short channel coherence time Tc. Fig. 2 shows the specific
frame structure with B time blocks for the time-varying
channel estimation, which is divided into Bp pilot blocks
and Bd data blocks, i.e., Bp + Bd = B. The channel at
the n(1 ≤ n ≤ B)-th data block need to be predicted from
the estimated channels at pilot blocks. In this case, the input
tensor H̃P ∈ RM×P×2Bp

of the channel estimation network
is the concatenation of pre-estimated channels at Bp pilot
blocks. Accordingly, the output tensor Ĥ ∈ RM×N×2B of
the network denotes the concatenation of cascaded channels
of all time blocks within a frame. By constructing similar
label group with the quasi-static channel estimation, i.e., H̃ =
(H̃1, H̃2, · · · , H̃S) with the spatial sampling channel H̃s ∈
RM×2sP×2B , the multi-scale supervision training framework
can be developed for the cascaded channel estimation.

B. Channel Attention Mechanism

The attention mechanism has been widely applied in numer-
ous DL tasks, which can enhance local useful features and
suppress other useless information. Fig. 3 shows the designed
channel attention block (AB) based on classic SENet architec-
ture [21], which sets adaptive weights for different channels
in the feature map. Note that some more advanced attention
mechanism have been proposed in the DL field. Compared
with other attention mechanisms, the architecture of AB is
more simple and concise, which only introduces an extra
branch to learn a set of attention weights compared with the
classic residual block [32] Besides, the adaptive learning of
AB is efficient for channel estimation, which conform to the

“divide-and-conquer” policy in the traditional large-scale array
communications [20]. As such, the improved AB is exploited
to the RIS channel estimation in the following.

Let Xi ∈ RC×D1×D2 denote the input feature map in the
i-th AB, where C, D1 and D2 denote the channel, height
and width of feature map Xi, respectively. Firstly, we stack
two convolution layer with C filters to obtain the feature
Fi = [f1, f2, · · · fC ] ∈ RC×D1×D2 . Then, we adopt the
global average pooling to shrink Fi through spatial dimensions
D1 × D2. Let zi = [z1, z2, · · · zc, · · · , zC ]T ∈ RC×1 denote
the channel statistic of Fi, where zc is given by

zc =
1

D1 ×D2

D1∑
d1=1

D2∑
d2=1

fc(d1, d2). (13)

In the learning process of attention weight for the original
SENet, two fully connected (FC) layers are designed to capture
non-linear cross-channel interaction, which involves dimen-
sionality reduction for controlling model complexity, and the
attention architecture also be adopted in the existing works for
channel estimation of massive MIMO systems [20]. However,
the dimensionality reduction between two FC layers destroys
the direct correspondence between channel and its weight
[33]. Consequently, we adopt a FC layer with C neurons to
realize the direct connection between channel and weights,
which can capture the channel-wise dependencies. Moreover,
the Sigmoid activation function is used to obtain the attention
weight α = δ(WFCzi) ∈ C×1, where WFC ∈ C×C denotes
the weight of the FC layer and 0 ≤ δ(x) = 1

1+e−x ≤
1. In general, the Sigmoid activation function confines the
attention weight α to the range of (0, 1), which is suitable
for positive real-valued pixel in the computer vision. However,
the communication data in the considered scenario is complex-
valued, whose amplitude and phase information can not be
well characterized by the Sigmoid function.

In the proposed AB, we use the hard Tanh activation
function gating mechanism to generate the attention weight,
i.e., −1 ≤ δ(x) = ex−e−x

ex+e−x ≤ 1, which can not only
adjust the each channel intensity of the feature map, but can
also control the direction of the output feature. Moreover,
the Tanh function is centrally symmetric with a mean value
of 0. Therefore, it can still map the Gaussian distribution
N (0, 1) to a distribution that maintains the characteristic of
zero mean value. We rescale the Fi with attention weight α
to obtain the weighted feature map by adopting the channel-
wise multiplication, and then skip connection is used to fuse
the semantic information between the original feature and the
weighted feature. Based on the above mechanism, the output
Ai of AB can be expressed as

Ai = Xi + Fi ⊙α. (14)

C. Laplacian Pyramid

The backbone and information flow of the proposed LPAN
follow the Laplacian pyramid framework that is the improve-
ment of Gauss pyramid by introducing the residual coefficients
[34]. In the Gauss pyramid, the original resolution image at the
bottom of pyramid is sequentially downsampled, which forms
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Fig. 4. The proposed Laplacian pyramid attention network (LPAN) architecture.

a set of images arranged from top to bottom in the shape of a
pyramid according to the size of image resolution. However,
this sampling operation will lose high-frequency information
of images. Let G(Ξ) = [Ξ0,Ξ1, · · · ,ΞS ] denote a Gauss
pyramid with S levels, where Ξs(0 < s < S) denotes the
s-th level image of the pyramid. The s-th level of Laplacian
pyramid can be represented as

Rs = Gs(Ξ)− u (Gs+1(Ξ)) = Ξs − u (Ξs+1) , (15)

where u (Ξs+1) denotes the upsampling image of Ξs+1,
and the residual coefficient Rs represents the high-frequency
information of image.

In the DL-based channel estimation model, the feature map
F compose of high-frequency feature FH and low-frequency
feature FL, that is F = FH+FL. When we use neural network
to extract the feature of data, the feature map will represent
more high-frequency information for deeper network layer,
while FL is the important component for the reconstruction
of F. Consequently, we can design the progressive cascaded
channel estimation model by imitating the Laplacian pyramid
architecture, where the upsampling operator u (�) and the
Laplacian coefficients Rs is designed by neural network.

D. The Dual-Branch and Multi-Scale Architecture of LPAN

Fig. 4 shows the proposed Laplacian pyramid attention
network (LPAN) architecture with S reconstruction modules
(RMs), which progressively upscale the lower-dimensional
channel matrix by a scale of 2 in the reflection element domain
of RIS. The s-th RM can be divided into two branches, namely
FEB and CRB, which learn the high-frequency information Rs

and the low-frequency information Us of cascaded channel
matrix, respectively. Note that the image size is decreasing
with the increase of the pyramid level s, while the dimension
of the channel matrix is increasing with the increase of the
number of RM s, i.e., ΞS = H̄P and Ξ0 = H̄S in the channel
estimation.

In the FEB of the s-th RM, we first use a convolutional
block (CB), which is composed of convolutional layer and
Leaky Rectified Linear Unit (LeakyReLU) activation func-
tional layer, to boost the number of channel of the input
feature map H̄P . Next, J ABs are stacked to extract the more
representative features. Generally, normalization layers are
used to stabilize the training process of deep neural network,

e.g., batch normalization (BN) layer. In the SR-based channel
estimation model, the input low-resolution channel matrix has
a similar space distribution to the complete channel matrix,
while BN will change the original data distribution. In the
proposed LPAN, we adopt weight normalization (WN) to
reparameterize the weight vector of the network instead of
normalizing the mini-batch data of each layer in BN [35].
Specifically, WN decouples the original network weight w
into a parameter vector v and a scalar parameter g as follows:

w =
g

∥v∥
v, (16)

where v/ ∥v∥ denotes the identity vector of w. Let ∇wL,
∇gL, and ∇vL represent the gradients of loss function L
with respect to w, g, and v, respectively. In the process of
network training, the optimization of w is transformed into
the optimization of g and v, which are given by

∇gL = ∇gw(∇wL)T =
∇wLvT

∥v∥
, (17)

∇vL =
g

∥v∥
∇wL −

g∇gL
∥v∥2

v =
g

∥v∥
Mw∇wL, (18)

where Mw = I − wwT /∥w∥2 is a projection matrix that
projects onto the complement of the vector w. Compared the
with initial ∇wL, ∇vL scales the weight gradient by g/||v||,
and it projects the gradient away from the current weight
vector w, which can stabilize the training of the network and
accelerate the network convergence.

Compared with BN, the performance of WN is not related
with the batch size and data, and the memory and computation
overhead is lower. Moreover, the SR-based channel estimation
is sensitive to the learning rate η with a small value, e.g., η =
10−4 [19]. The training loss of the network without WN layer
will explode for a larger η, while the small learning rate is
easy to cause overfitting. The WN can provide a wider range
of η in the training, which improve the estimation accuracy in
the test phase.

After the feature extraction of J ABs in the s-th RM, we use
an upsampling block (UB) to scale the feature map to a desired
dimension of the channel matrix, e.g., H̄P ∈ RM×P×2 →
H̄1 ∈ RM×2P×2 or H̃P ∈ RM×P×2BP → H̃1 ∈ RM×2P×2B

in the first RM. In the UB, we adopt the nearest interpolation
and the convolutional layer to increase the size of the feature
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map, which can avoid check artifacts in the upsampling [36].
Since the cascaded channel is represented as the real-valued
matrix with two channels, the output of FEB reduces the
number of channels of the feature map to Rs through a CB
with 2 filters, which is termed as the transition path (TP).

In the second branch of the proposed LPAN, we design the
CRB to characterize the information flow of low-frequency
components in high-dimensional cascaded channel estimation,
which is equal to the function u (·) in the Laplacian pyramid.
In the CRB of the s-th RM, the lower-dimensional channel
matrix is directly upscaled to Us by the UB. Hence, the output
of the s-th RM can be expressed as

Ĥs = Us + Rs. (19)

E. Multi-Scale Supervision

To realize the progressive construction for high-dimension
cascaded channel, we adopt multi-scale supervised learning to
generate the cascaded channel matrix with different scales. The
normalized mean squared error (NMSE) is widely used as the
performance metric of channel estimation, which is defined
as NMSE = E[||Ĥ − H||2F /||H||2F ]. Intuitively, the L2 loss
with Euclidean distance can directly reflect the NMSE metric.
In fact, for the SR-based channel estimation task, L1 loss
function with Manhattan distance can achieve better perfor-
mance compared with L2 loss [17]. However, the gradient of
L1 loss will jump at the extreme point, e.g., zero value, and
a small difference will also lead to a large gradient. As a
remedy, we adopt the Charbonnier loss function to optimize
the whole network [34], which is a differentiable variant of
L1 loss. The multi-scale supervision based loss function is
given by

L(H̄, Ĥ)=
1
B

B∑
i=1

S∑
s=1

ρ
(
H̄(i)
s − Ĥ(i)

s

)

=
1
B

B∑
i=1

S∑
s=1

ρ
(
H̄(i)
s −U(i)

s −R(i)
s

)
, (20)

where ρ(X) =
√

X2 + ε2 is the Charbonnier penalty function,
ε is a regularization parameter, and B is the number of training
sample in each batch. For the case of time-varying channel
estimation, the label H̄ in (20) is replaced as H̃.

Remark 2: Compared with existing SR network-based
channel estimation models, the architecture of the proposed
LPAN has two unique characteristics: 1) progressive upsam-
pling strategy along the depth direction; and 2) dual-branch
pipeline along the width direction, which increase the net-
work capability and realize the fine channel reconstruction.
However, such a structure may cause a more complex net-
work in terms of parameters and floating point of operations
(FLOPs). Specifically, the computation of neural network
is proportional to the dimension of computed feature map,
while the progressive upsampling strategy in the LPAN will
introduce more FLOPs compared with the post-upsampling
SR model, e.g., EDSR. Besides, the dual-branch architecture

Fig. 5. The proposed lightweight convolution module in LPAN-L.

of the LPAN introduces more parameters. To address the
aforementioned challenges, we design a lightweight version
of LPAN in the following, which can achieve good balance
between performance and complexity.

IV. LPAN-L: THE LOW-COMPLEXITY ARCHITECTURE
DESIGNING OF LPAN

In this section, we propose a computationally efficient
LPAN-L model for the cascaded channel estimation in RIS
systems, where the network complexity of LPAN is further
optimized from the basic convolution operation and the whole
network architecture. We also develop a transfer learning
framework to efficiently deal with the domain mismatch
problem in the practical deployment of the proposed LPAN-L
model. Finally, we present the model parameters and com-
putational complexity analysis for the proposed LPAN and
LPAN-L model.

A. Lightweight Convolutional Module

In the original AB, two standard convolutional layers are
used to obtain semantic features of the cascaded channel. To
reduce the complexity of AB, we proposed a lightweight atten-
tion block (LAB) by redesigning the two convolutional layers
in the original AB. Fig. 5 shows the designed convolutional
module in the LAB, which consists of group convolution,
dilation convolution, and point-wise convolution.

1) Group Convolution: Let X ∈ RC1×D1×D2 and O ∈
RC2×D1×D2 denote the input feature map and output fea-
ture map of convolutional layer, respectively. The Ω ∈
RC2×C1×k1×k2 denotes the filter set of convolutional layer,
where k1× k2 denotes the size of convolutional kernel. In the
standard convolutional layer, each element of Oc2 is obtained
by the convolutional operation between all elements of X
and Ωc2 (1 ≤ c2 ≤ C2), where the number of parameters
and FLOPs are Υp = C1 × C2 × k1 × k2 and Υf =
D1 × D2 × C1 × C2 × k1 × k2, respectively. Consequently,
the training of large convolutional networks is difficult for
memory limited hardware, e.g., massive mobile terminals. By
designing the group strategy based on standard convolution
layers, the group convolution is an efficient alternative of dense
convolution operations for the CNN architecture. In the group
convolution layer, the tensor X is divided into L grouped
feature map Xl ∈ RC1/L×D1×D2 along the dimension of
channel. Similarly, we also divide the tensor Ω into L group
subfilters Ωl ∈ RC2/L×C1/L×k1×k2 . Then, the convolution
operation is carried out between Xl and Ωl. The convolution
results is defined as Ol = Xl ⊗Ωl ∈ RC2/L×D1×D2 . Lastly,
we concatenate all Ol along the dimension of the feature
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Fig. 6. The receptive field of dilated convolution in LPAN-L.

channel to obtain the output feature map O ∈ RC2×D1×D2 ,
which is given by

O =


X1 ⊗Ω1

X2 ⊗Ω2

...
XL ⊗ΩL

 =


O1

O2

...
OL

 . (21)

In the group convolution, the number of parameters and
FLOPs will be reduced with the increase of group number L,
which can be expressed as Υp/L and Υf/L compared with
standard convolution, respectively.

2) Dilated Convolution: Considering the acceptable com-
plexity of neural network, the CNN typically use convolutional
layers with small-size convolutional kernels for feature extrac-
tion. With the development global attention mechanism [31],
the insufficient ability to extract global information of CNN
has been amplified, while large convolution kernel is desired to
obtain enough receptive field for CNN architecture. Since the
large convolution kernel will introduce more parameters and
thereby results in high computation complexity, we use the
method of dilated convolution to expand the receptive field
without increasing the additional computation complexity.
Fig. 6 compares the receptive field of the dilated convolution
with the standard convolution, where the solid and shadow
areas represent the effective convolutional operations and the
receptive field, respectively. Let an integer κ and kc = k1 =
k2 denote the dilation rate and the size of the original kernel,
respectively. The size of dilated convolution kernel is ke =
kc + (kc − 1)(κ− 1), where the constant zero is filled in the
dilated location of the dilated convolution kernel. Further, the
receptive field ςi of the i-th dilated convolutional layer can be
expanded as

ςi = ςi−1 + (ke − 1)
i−1∏
j=1

Stridej , (22)

where Stridej denotes the strides of the j-th convolutional
layer. Since the convolution kernel ke is expanded by the zero
padding, the dilated convolution can obtain the larger receptive
field to capture the long-range dependency of the cascaded
channel feature.

3) Point-Wise Convolution: In the LAB, we first use two
group convolutions to replace two standard convolutional
layers, which reduces the computations and parameters of the
LPAN model. In the first group convolution, the dilated convo-
lution kernel is used to expand the receptive field. Then, we use

the point-wise convolution with multiple 1 × 1 convolution
kernels to realize cross channel information interaction of the
feature map obtained by group convolution. The parameters
and FLOPs of Point-wise convolution is C1 × C2 and D1 ×
D2 × C1 × C2, respectively, which is much less than that in
the general convolutional layer.

B. Deep Recursion and Parameter Sharing

Next, we will reduce the network parameters by decoupling
the architecture characteristic of LPAN. In the each RM of
FEB, we stack J ABs to learn the high-frequency component
of the cascaded channel, where the number of network layers
of each AB is the same. Consequently, we adopt the archi-
tecture of recursive layers to replace the original multi-layers
network [37], where a AB carries out J re(0 ≤ J re ≤ J) recur-
sion operations to substitute for J re ABs. The receptive field
of the convolution layer increases once after each recursion,
while the number of parameters of the network is fixed with
the increase of network depth.

Similarly, the network structure is the same in each RM
for the CRB, which realizes the upsampling mapping from
the low-dimensional channel matrix to the high-dimensional
channel matrix. Since all UBs learn the spatial correlation
of the cascaded channel in CRB, the parameter values of
the network layer are very close. Consequently, we share
the network parameters of the CRB across different pyramid
levels, i.e., Ssh(0 ≤ Ssh ≤ S) RMs in the LPAN-L. Thus,
a single parameter set can construct the multi-level CRB under
different upsampling scales.

C. Transfer Learning Framework for Domain Adaption

As a data-driven channel estimation scheme, the per-
formance of DL-based estimator depends on the matched
sampling space between the training stage and the test stage.
Specifically, the involved datasets in the DL estimator are
divided into the source domain data in the training stage
and target domain data in the test stage. In the idea case,
the data distribution in source domain and target domain
is similar. However, in the practical deployment of the DL
estimator, the trained model may need to be applied into the
new communication environments [38]. Moreover, for RIS
systems, the cascaded channel modeling is related to dynamic
parameters, e.g., the RIS location, scatterers distribution, and
carrier frequency. Hence, we develop an efficient transfer
learning framework to realize the cross-domain adaption based
on the proposed LPAN-L architecture.

Firstly, the LPAN-L model is trained in the source domain
Ds = {F s, P (H̄s,P)} with N s paired samples, in which
F s denotes the the feature space of the source domain, and
P (H̄s,P) denotes the marginal probability distribution with
H̄s,P ∈ F s. The channel estimation task in Ds can be
expressed as ℘s = {Ωs, P (H̄s|H̄s,P)}, where Ωs represents
the label space of Ds and P (H̄s|H̄s,P) denotes the posterior
probability distribution with H̄s ∈ Ωs. In fact, the trained
model can be regarded to learn the distribution P (H̄s|H̄s,P)
based on the source domain data Ds. In the test stage
of the LPAN-L model, we defined the target domain as
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Algorithm 1 Transfer Learning: Selective Fine-Tuning
1: Initialization:

is = 0, it = 0,
f = {f1, · · · , fs, · · · , fS} with random weights

2: Pre-training in Source Domain Ds:
3: Construct source domain task ℘s with N s samples
4: while is ≤ Es do
5: update f with the gradient of loss function L(H̄s, Ĥs)

6: is = is + 1
7: end while
8: Transfer Learning in Target Domain Dt:
9: Construct target domain task ℘t with N t samples

10: freeze Sf RMs parameters f f = {f1, · · · , fSf}
11: while it ≤ Et do
12: only update f t = {fS−Sf , · · · , fS} with the gradient

of loss function L(H̄t, Ĥt)
13: it = it + 1
14: end while
15: Online Estimation in Target Domain:

Ĥ = (Ĥ1, Ĥ2, · · · , ĤS) = f(H̄P)

Dt = {F t, P (H̄t,P)} composed of N t ≪ N s samples,
in which F t denotes the the feature space of the source
domain, and P (H̄t,P) denotes the marginal probability dis-
tribution. Accordingly, the channel estimation task in Dt can
be denoted as ℘t = {Ωt, P (H̄t|H̄t,P)}, where Ωt represents
the label space of Dt and P (H̄t|H̄t,P) denotes the poste-
rior probability distribution. According to the inductive and
homogeneous transfer learning theory, the feature space in the
source domain and target domain satisfies {F s, F t} ∈ F , while
the probability distributions present P (H̄s,P) ̸= P (H̄t,P) and
P (H̄s|H̄s,P) ̸= P (H̄t|H̄t,P) due to different communication
environments.

Although the difference of the source domain and tar-
get domain restricts the online deployment of the trained
model, the learned knowledge in the source domain can be
transfered into the target domain by utilizing the transfer
learning framework. In this work, we exploit a selective fine-
tuning strategy-based transfer learning model, which leverages
the multi-scale hierarchical characteristics of the proposed
LPAN-L architecture. Suppose the proposed LPAN-L model
is defined as f , in which the s-th RM in LPAN-L is denoted
as fs, i.e., f = {f1, · · · , fs, · · · , fS}. For the trained model
in the source domain, we selectively freeze the network
parameters of Sf(Sf < S) RMs in the LPAN-L model,
e.g., from the 1-st RM to the Sf-th RM. Then, we fine-tune
the network parameters of S−Sf RMs in the LPAN-L model
by utilizing the limited target domain samples. The specific
fine-tuning procedures of the transfer learning are provided
in Algorithm 1, where the pre-training epochs Es are larger
than the fine-tuning epochs Et. Compared with the pre-training
stage, the training cost in the fine-tuning stage can be reduced
because only partial parameters of the LPAN-L model need
to be updated. By utilizing the proposed transfer learning
framework, we only use limited fine-tuning samples to realize

the domain adaption for the proposed LPAN-L model, which
avoids the re-training process with a large number of target
domain samples.

D. Parameters and Computational Complexity Analysis

Suppose the number of the convolutional filters is
w and the filter size is kc × kc for two convolu-
tional layers in the AB, the parameters and FLOPs of
a AB are w2(2k2

c + 1) and 2w2(k2
cD1D2 + 1), where

D1 and D2 denote the height and width of feature
map in the AB. Hence, the time complexity of FEB,
CRB, and TP in the s-th RM is O

(
2sPMw2kc

2(J + 1)
)
,

O
(
2s+2PMkc

2
)

and O
(
2s+1PMwkc

2
)
. For the quasi-static

channel estimation, the total time complexity of LPAN
is O

(∑S
s=1 2sPMkc

2(w2(J + 1) + 2w + 4)
)

, while the
time complexity in the time-varying channel estimation
is O

(∑S
s=1 2sPMkc

2(w2(J + 1) +Bw +B2)
)

. The space
complexity of the quasi-static and time-varying channel
estimation are O

(∑S
s=1 kc

2(w2(2J + 1) + 2w + 4)
)

and

O
(∑S

s=1 kc
2(w2(2J + 1) +Bw +B2)

)
, respectively.

In the LPAN-L architecture, the parameters and FLOPs of
a LAB are w2kc

2(1/g1 + 1/g2 + 1) and w2k2
cD1D2(1/g1 +

1/g2 + 2), where g1 and g2 denote the group number of
the first and second group convolution layer in the LAB,
respectively. Let J lw

s and J re
s , 0 ≤ J lw

s , J
re
s ≤ J , denote the

number of LABs and recursion operations in the s-th RM,
respectively. For the case of the quasi-static channel estima-
tion, the time complexity of FEB in the s-th RM is reduced
to O

(
2s−1PMw2kc

2(2(J − J lw
s ) + (1/g1 + 1/g2)J lw

s + 2)
)

in LPAN-L. For the time complexity of CRB and TP
in the s-th RM, the LPAN-L model is the same with
LPAN. The space complexities of FEB and CRB are
reduced to O

( ∑S
s=1 w

2kc
2(2(J − J re

s ) + (1/g1 + 1/g2)J re
s )

)
and O

(
(S − Ssh)4kc2

)
, respectively. The similar complexity

reduction can be obtained for the time-varying channel estima-
tion. Hence, both parameters and computation complexity of
the proposed LPAN-L model are efficiently reduced compared
to the LPAN model.

V. NUMERICAL RESULTS

In this section, we first present the simulation setting,
including the system parameters of the RIS-aided mmWave
communications and hyper-parameters adopted for the net-
work training. Then, we provide the numerical results to
verify the channel estimation performance of the proposed
LPAN in terms of estimation accuracy, convergence speed,
and robustness.

A. Simulation Setup

In the simulation, we set M = 8×8, N = 16×16 and K =
6 for the RIS-aided multi-user massive MIMO communication
system. The mmWave communication frequency is set to fc =
28 GHz and the parameter λp is set to λp = 1.8 [39]. The
angular spread is set to σ = σφ = σϕ = 5◦. The Poisson
distribution and uniform distribution are used to model the
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TABLE I
THE HYPER-PARAMETERS FOR THE BASELINE LPAN

cluster C ∼ max{P (λp), 1} and scatters of each cluster Sc ∼
U [1, U ], respectively. Unless otherwise specified, we set U =
30, n0 = 3.19, b0 = 0.06, σx = 8.29 dB, and f0 = 24.2 GHz
for NLOS path in the path loss model, while n0 = 1.73,
b0 = 0.06, and σx = 3.02 dB for LOS path [23]. In the source
domain scenario, the three-dimensional coordinates of BS and
RIS are set to (xBS, yBS, zBS) = (0, 25, 2), (xRIS, yRIS, zRIS) =
(40, 50, 2), respectively. To mitigate the serve multiplicative
fading effect for cascaded reflection link in RIS systems, the
coordinates of UE are randomly distributed in the 1 m height
with a horizontal radius of 8 m centered on RIS. According
to the 3GPP LTE-A standard [29], we set the EVM ρ = ρt =
ρr = 0.1 and the error of ON/OFF mode ϵ = ϵ1 = ϵ0 = 0.01
[27]. We define r = P

N = 1
k as the ratio of the number of the

activated RIS elements to the total elements, where P pilots
are used for the LS pre-estimation.

In the pre-training dataset construction, we generate Nk =
5× 103 paired samples for each user to construct the dataset,
i.e., total samples of Ns = KNk = 3 × 104. The range of
training SNR is set to [0, 20] dB with the interval of 5 dB to
generate the received pilot signal Y. In the training process,
we adopt the cosine learning rate decay schedule to avoid
converge directly to a poor local minimum point, where the
learning rate ηi at the i-th training epoch is given by

ηi = η0 +
1
2

(η1 − η0)
(

1 + cos
(
i

Esπ

))
, 0 ≤ i ≤ Es,

(23)

where η0, η1 and Es represent initial learning rate, final
learning rate and the total number of epochs, respectively.
Table I shows the detailed training hyper-parameters of the
baseline LPAN.

Fig. 7. NMSE performance for different channel estimation schemes.

B. Performance Comparison for Different Estimation
Schemes

In Fig. 7, we compare the NMSE performance of the
proposed LPAN with the traditional estimators, i.e., binary
reflection protocol-based LS estimator [27], PARAllel FACtor
decomposition-based alternating LS (ALS) estimator [40],
[41], empirical linear minimum mean square error (LMMSE)
estimator [15], [42], and OMP algorithms [12], as well as
other SR networks, i.e., SRCNN [18] and EDSR [19]. In the
traditional algorithms, the required pilot overhead is set to
QLS = QLMMSE = N and QOMP = N/2, respectively, while
the required pilot overhead is QDL = P = N/2S = N/8 for
DL-based channel estimation networks. In the SRCNN and
EDSR, the UB is designed at the input and output layers
of the network, respectively. To demonstrate the impact of
upsampling strategy on channel estimation, we modify the
single-step up-sampling in the SRCNN to the asymptotic
sampling with 2 times factor, which is termed as PSRCNN
in Fig. 7. For the fair comparison of different networks, the
number of filters and the depth of network layers are set to
the same values for EDSR and LPAN.

As the classic linear estimator, the estimation accuracy
of LS and LMMSE algorithm is non-ideal for unacceptable
noise and HWIs. Note that the required second order statistics
of the LMMSE estimator are replaced by the Monte Carlo-
based empirical correlation matrix with training samples in
Fig. 7. In the clustered statistical MIMO channel modeling
of RIS systems, the sparsity of the cascaded channel is
variable and relatively large due to the extensive scatters,
which limit the estimation performance of OMP. The SR-based
channel estimation is related to the method and location of
the upsampling. In the SRCNN, the single-step upsampling,
i.e., H̄P ∈ RM×P×2 → H̄S ∈ RM×N×2, will introduce
serve interpolation errors in the input layer, which results
in limited recovery effect of the subsequent network, and
the high-dimensional input also increases the computational
complexity of the network. The PSRCNN is an improved
model from the SRCNN, which progressively upscaling the
low-dimensional input tensor to the complete dimension of
M×N×2 with 2 times upsampling factor, and thereby reduces
the interpolation error of input data. In the EDSR, a large
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Fig. 8. Convergence performance with training epochs E of DL estimators.

number of residual blocks are stacked before upsampling,
and then the extracted efficient features are used to the final
reconstruction. This post-upsampling architecture can reduce
the computational complexity and improve the reconstruction
performance. However, the post-upsampling layer is difficult
to recover the high-resolution cascaded channel matrix directly
when the upsampling factor is large. In the proposed LPAN
with superior channel estimation performance, we further
optimize the location of up-sampling by introducing the multi-
scale supervision, where the UB is embedded in the network
from low dimension to high dimension to realize progressive
reconstruction of the cascaded channel matrix. Furthermore,
the lightweight LPAN-L architecture is developed to reduce
the network complexity with sight performance loss.

Table II compares the required memory, parameters and
FLOPs for different channel estimation schemes, in which
we provide the NMSE performance of different LPAN-L
variants with different scales of network parameter, i.e., the
small-size, medium-size and large-size LPAN-L by controlling
hyper-parameters g1, g2, J lw

s and J re
s in Table I. In the

original LPAN architecture, we design the CRB to obtain
the low-frequency component of cascaded channel, which
introduces more network parameters compared with EDSR.
In addition, the progressive upsampling operation in each RM
increases the computational complexity because the size of
feature map is enlarged. Compared with the proposed LPAN
model, the LPAN-L adopts the group convolution operation
and the parameter sharing strategy to reduce half of the
parameters and the computation complexity, while providing a
close performance to LPAN. We observe that the performance
gap between the LPAN and the LPAN-L will be progressively
reduced by increasing the network size of the LPAN-L. More-
over, the small-size LPAN-L model is still superior the EDSR
model in terms of channel estimation accuracy and network
complexity.

In Fig. 8, we show the convergence speed of different chan-
nel estimation models, where we use the average NMSE of
validation set as the performance evaluation metric. Compared
with the existing schemes, the convergence of the proposed
schemes is more stable and fast with the increase of training
epochs E. Based on the cascaded channel matrix estimated
by different estimation schemes, we further compares the

Fig. 9. Achievable sum-rate performance of DL estimators.

Fig. 10. NMSE performance of LPAN-L for different mobility speeds v.

achievable sum-rate performance of different DL estimators
in Fig. 9. Suppose vk ∈ CM×1 is the normalized precoding
vector at the BS for k-th UE, the signal-to-interference-plus-
distortion-noise-ratio for the UEk can be expressed as

γk =
pk

∣∣vTkHkθ
∣∣2

ρ̄pk
∣∣vTkHkθ

∣∣2 + pk
K∑

i=1,i̸=k

(1 + ρ̄)
∣∣vTi Hkθ

∣∣2 + δ2n

,

(24)

where ρ̄ = ρ2
t + ρ2

r . Furthermore, the achievable sum-rate of
RIS systems can be calculated by R =

∑K
k=1 log2 (1 + γk).

Following the work of [43], we adopt the cross-entropy
optimization method to determine the precoding matrix V =
[v1,v2, · · · ,vK ] at the BS and reflecting vector θ at the RIS,
where we set b = 2 bits discrete reflection phase shift consid-
ering the hardware constraint, i.e., θi ∈ {+1,−1,+1j,−1j}.
Fig. 9 shows the achievable sum-rate of RIS-aided communi-
cation system by utilizing the estimated cascaded channel of
different models. The LPAN-based channel estimation scheme
can achieve better achievable sum-rate compared with other
estimation schemes, while the achievable sum-rate perfor-
mance of both LPAN and LPAN-L is very close.

C. Robustness Analysis for the Proposed LPAN-L Model

In Fig. 10, we presents the NMSE performance of the
proposed LPAN-L under different mobility speeds v, in which
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TABLE II
TRAINING OVERHEAD FOR DIFFERENT NETWORKS

Fig. 11. NMSE performance of LPAN-L under different pilot overhead r.

the number of pilot block is set to Bp = 2 within a frame
with B = 6 blocks, and the sampling period Tb of each
time block is fixed as Tb = 1/(4fdmax) ≈ 0.24 ms. With the
increase of v, the coherence time Tc will be shorter and the
channel variation of consecutive time blocks within a frame
will be faster. Hence, the channel estimation accuracy of the
proposed LPAN-L will be sightly decreased, while a stable
NMSE performance can be obtained even for the high-speed
scenario with v = 60 km/h. Note that we pretrain the LPAN-L
with NT = 3 ∗ 104 samples for the case of v = 60 km/h
in the network training, while the transfer learning is used
to fine-tune the LPAN-L model with limited samples for the
cases of v = 20 and v = 40 km/h.

Fig. 11 shows the NMSE performance of the proposed
LPAN-L under different pilot overhead ratios r. The baseline
LPAN-L model in simulation composes of 3 RMs, each of
which realize 2 times upsampling based on the input tensor.
The pilot overhead for baseline LPAN-L is P = 1

23N = 1
8N .

To reduce the training overhead of LPAN-L under different
pilot lengths, we use the pretrained model of the baseline
LPAN-L to initialize the network weights. Specifically, if r <
1
8 , we only increase the UBs in the last RM based on baseline
LPAN-L, e.g., adding 1 UB when r = 1

16 , while the network
weights of s(1 ≤ s ≤ S − 1) th RM are initialized by
baseline LPAN. Conversely, we delete partial RMs for larger
r, e.g., deleting 1 UB when r = 1

4 . By leveraging the
pretrained model, we only use half of the sample size and
training epochs for other pilot length, i.e., r = 1

16 or 1
4 .

With the decrease of r, the required upsampling dimension
will be larger, so the high-dimensional channel reconstruction
becomes more challenging. Nevertheless, LPAN can achieve

Fig. 12. NMSE performance of LPAN-L under different number of refection
elements N .

Fig. 13. NMSE performance of LPAN-L under different HWIs (ϵ, ρ).

satisfactory channel estimation accuracy even with small pilot
overhead, e.g., P = Nr = 8.

Fig. 12 presents the NMSE performance of the proposed
LPAN-L under different number of RIS elements N . For the
DFT protocol-based LS estimator, the NMSE performance
of channel estimation can be improved with the increase of
N [15]. In this case, the more accurate pre-estimated input
tensor can be obtained for the DL model. Hence, the channel
estimation accuracy of the LPAN-L model is also improved.
Thanks to the multi-scale pyramid architecture of the LPAN-L
model, the same LPAN-L architecture is compatible with the
RIS with different sizes. Note that the network complexity
will be increased for the larger-size RIS because the operating
dimension of the feature map in LPAN-L is boosted.

In Fig. 13, we study the NMSE performance of the proposed
LPAN-L for different degrees of HWIs, where the LPAN-L is
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Fig. 14. NMSE performance of LPAN-L under different angular spreads σ
and scattering distribution (λp, U).

Fig. 15. NMSE performance of the transfer learning-based LPAN-L model.

trained under the fixed HWIs sets (ϵ, ρ) = (0.01, 0.1). With
the increase of levels of HWIs (ϵ, ρ), the estimation accuracy
of the LS pre-estimation will be decreased, which introduces
more estimation error into the input tensor of the DL model
and results in the performance degradation of the LPAN-L
model. However, since the neural network is robust for a
certain degree of disturbance of input data, even under severe
HWIs, i.e., (ϵ, ρ) = (0.02, 0.15), the LPAN-L can still achieve
satisfactory performance.

Fig. 14 shows the NMSE performance of the proposed
LPAN-L under different scattering distributions, in which
the LPAN-L model is trained with the given scattering dis-
tribution, i.e., angular spread σ = 0.5 and the scattering
distribution (λp, U) = (1.8, 30) in the training stage. We
observe that the trained LPAN-L model can work well under
different scattering distributions in the test stage, in which
the LPAN-L model has better robustness for the scattering
parameters (λp, U). This stable performance benefits from
the various channel samples generation in the training dataset
construction, in which we adopt the dynamic cascaded channel
modeling with randomly distributed scatters.

D. Domain Adaption Performance for Transfer Learning

In Fig. 15, we provide the transfer learning performance of
the LPAN model for two cases of the spatial-varying target
domain. For the case of target domain 1, the RIS is placed

Fig. 16. NMSE performance for different attention modules in LPAN-L.

at the x-z plane (the opposite-wall for users) instead of the
y-z plane (the side-wall for users) in the source domain. On
the basis of target domain 1, the scenario of target domain 2
further considers the case of different cells, in which the carrier
frequencies of neighbor cells are different to avoid the inter-
cell interference, and the path loss model in equation (2)
has different system parameters. Due to the difference of
data distribution, the pre-trained model in the source domain
can not be directly applied to the channel estimation in the
target domain. By utilizing the proposed selective fine-tuning
strategy, the fine-tuning model can obtain stable NMSE per-
formance in the source domain. We also provide a completely
retrained LPAN model in the target domain as the performance
lower bound. The required training samples and epochs are
N r = Nk × K and Er = Es for the retraining scheme.
However, in Fig. 15, the proposed transfer learning framework
only needs N t = N r/10 samples and Et = Er/5 epochs.

E. Ablation Experiment for the Proposed Attention Block

Fig. 16 shows the ablation experiment to verify the effec-
tiveness of the proposed AB, in which we provide three
benchmarks for the attention mechanism variants. Specifically,
the convolution-based residual module without attention mech-
anism is used as the basic benchmark [17], [32]. We also
compare the existing channel attention and spatial channel
modules [21], [44], which generates the channel attention
weight zc ∈ RC×1×1 from the feature channel dimension
and the spatial attention weight zs ∈ R1×D1×D2 from the
spatial dimension of the feature map, respectively. We observe
that the channel estimation accuracy can be improved by
introducing the attention mechanism into the FEB of the
LPAN-L model. Compared with the excitation operation of
the existing attention modules, the proposed AB can retain
the direct correspondence between channel of feature map and
attention weight by adding the single FC layer. Furthermore,
the Tanh activation can restrict the attention weight to a more
reasonable range. Consequently, the proposed AB can achieve
better NMSE performance with more simple architecture.

VI. CONCLUSION

In this paper, we have proposed a progressive cascaded
channel reconstruction strategy by utilizing the multi-scale
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supervised learning for RIS-aided multi-user mmWave com-
munication systems. In contrast to the one-step reconstruction
used in previous works, we have designed the pyramid network
to implement channel extrapolation hierarchically. The pro-
posed LPAN with dual branch architecture separately extract
the high frequency and low frequency information of the
cascaded channel matrix, and then the residual learning with
attention mechanism is used to realize information fusion.
Moreover, we have designed the efficient convolution opera-
tion and parameter sharing strategy to construct the lightweight
LPAN-L model. Numerical results show that the proposed
LPAN and LPAN-L with limited pilot overhead is supe-
rior to existing channel estimation schemes, and have good
robustness for different system setups. The developed transfer
learning framework provides a domain adaptive solution for
the practical deployment of the proposed channel estimation
model. In the future works, we will extend the multi-scale
pyramid architecture to higher-dimensional channel estimation
scenarios, e.g., cooperative communications of multi-hop RISs
[4] and Holographic intelligent surfaces [45].
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