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Multi-Task Learning-Based Channel Estimation for RIS Assisted
Multi-User Communication Systems

Wenwu Xie, Jian Xiao™, Peng Zhu, and Chao Yu

Abstract—1In this letter, we propose a multi-task learning
(MTL)-based joint channel estimation scheme for reconfigurable
intelligent surface (RIS) assisted millimeter-wave communication
system, where the direct channel (DC) and cascaded channel (CC)
are estimated at the same coherence time by learning the feature
of shared pilots. Since the dimension of CC is much larger
than the DC, we design a learnable joint loss function based
on homoscedastic task uncertainty to balance the training of
two subtasks. Meanwhile, the residual shrinkage blocks are
introduced into the multi-task network architecture to release the
noise effect. Simulation results show that the estimation accuracy
of MTL with less pilot overhead outperforms conventional
channel estimation scheme, and significantly reduces training
overhead compared with the single-task network.

Index Terms— Reconfigurable intelligent surface, channel esti-
mation, multi-task learning.

I. INTRODUCTION
ECONFIGURABLE intelligent surfaces (RISs) can
impose the required phase shift on the incident electro-

magnetic wave through a planar surface with a number of
metamaterial units, which enhance the communication cover-
age and capacity with low deployment costs [1], especially
for millimeter-wave (mmWave) communication with signifi-
cant path loss. The effective design of passive beamforming
depends on whether the base station (BS) or user can acquire
accurate channel state information (CSI). Since the passive
RISs are not equipped with radio frequency (RF) chains,
the channel can only be sensed at the terminals. However,
the dimension of cascaded channel (CC) is much large for the
RIS with hundreds of elements, which increase the difficulty
of channel estimation compared with conventional communi-
cation system [2].

In [3], classic least square (LS) algorithm was applied
to CC estimation based on the element-by-element ON/OFF
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protocol. In this protocol, only one RIS element reflect the
pilot signal at the single time slot, which reduced the accuracy
of channel estimation. In [4], a efficient transmission protocol
was designed for RIS-aided orthogonal frequency division
multiplexing communication systems, where the DFT-based
reflection pattern was firstly used to the joint channel esti-
mation, and the optimality analysis of DFT protocol was
deduced in [5]. Reference [6] proposed a PARAllel FACtor
(PARAFAC) decomposition-based CC estimation scheme,
where two iterative estimation algorithms were designed to
estimate the BS-RIS channel and RIS-users channel. Con-
sidering the sparsity in RIS-aided mmWave communication,
compressed sensing (CS) was widely used to the channel
estimation for reducing pilot overhead [7], [8]. In [7], a sparse
representation of CC was deduced by utilizing properties of
KatriRao and Kronecker products. By exploiting the common
sparsity of angular CC for multiple users, [8] proposed the
double-structured orthogonal matching pursuit (DS-OMP)-
based channel estimation scheme.

Deep learning (DL) technology has shown great potential
to further improve the performance for RIS-aided commu-
nication system [9], [10]. In [11], LS was used to esti-
mate initial channel matrix with noise firstly, and then deep
residual network was adopted to obtain the channel matrix
after denoising. Similarly, [12] combined the CS algorithm
and deep complex-valued denoising network to reconstruct
a CC from the limited measured data, but few RF chains
need to be equipped to the RIS. In [13], channel estimation
was regarded as super-resolution reconstruction in computer
vision and only considered the channel from transmitter to the
RIS. In the semi-passive channel estimation with active RIS
elements [12], [13], cable or power supply must be configured,
which limited the application of RIS. The design idea of [14]
was similar with conventional two-stage channel estimation
schemes, where two independent neural networks (NNs) were
used to realize DC estimation and CC estimation by turning
off/on all RIS elements alternately. Since two single-task
learning (STL)-based networks were independent trained and
deployed, the training overhead was large for communication
device, including memory and computation complexity.

Considering the redundant training overhead of STL-based
channel estimation, we develop a joint channel estimation
scheme based on multi-task learning (MTL) [15], where DC
and CC are jointly estimated by utilizing the shared pilot
signal. In the proposed MTL network, the weights and para-
meters at the bottom layers are shared to learn the common
knowledge and representation, while two independent and
paralleled network layers are designed to complete both DC
and CC estimation tasks at the top layers. To suppress the
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Generic RIS assisted communication environment with random

noise effect of communication system, deep residual shrinkage
network (DRSN) architectures are introduced into the shared
bottom layers [16], which improve the estimation accuracy at
low signal-to-noise ratio (SNR).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS-aided downlink mmWave communi-
cation system, where the BS and the RIS respectively are
deployed with the M uniform planar array (UPA) anten-
nas and the N UPA elements to communication with K
single-antenna users. Following the 3GPP standardization [17]
and 5G mmWave physical channel modeling [18], the clus-
ter statistical MIMO channel model is used for RIS-aided
mm-Wave communications [19]. Fig.1 shows the three-
dimensional (3D) geometry model, where BS and RIS lie
on the yz plane and xz plane, respectively. We assume all
scatters between BS(RIS) and users (RIS) are grouped under
C clusters, each having S.(c = 1,2,...,C) sub-rays. a. and
be,s denote the distance between the BS and the cluster ¢
and the distance between the (¢, s)th scatterer and the RIS,
respectively. The BS-RIS channel G can be modeled as

G
=4/G. (9LGos) Ligsa (¢f§sv 9565) a’ ( LOS QLGés)
Gros

G 0 2000007 050

GLos

fi Mgm

EE

1)

where G be decomposed into two line of sight (LOS) compo-
nent G’ os and non-LOS (NLOS) component Gnpps. Due to
the space limitation, the parameters of Gnos Will be specified
and Gyos is similar. C' and S denote the number of clusters
and sub-ray per cluster for the transmission link from the BS to

RIS, respectively. ¥ = =1 z- represents a normalization
c=1"c

factor. 3.5 ~ CN(0,1) denotes the complex path gain.
LGg represents the fading associated with the (c, s)th path.
qbfs (95;‘) and ¢§g (95;) represent the azimuth (elevation)
angle at the RIS, and the azimuth (elevation) angle at the
BS for the (c, s)th path, respectively. The azimuth departure
angles (qbf;, s =1,...,5,) follows conditionally Laplacian

distribution d)G‘ ~ E (d)c ,O’¢) where ¢Ct follows a uniform
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distribution ¢St ~ U[—7/2,7/2] and o4 denotes a constant
angular spread [18]. Similarly, the elevation departure angles
HCGg ~ L (0%, 09), where HCGg ~ Ul—n/4,7/4] [18] and
oy denotes angular spread. a (¢, ) represents the UPA array
response.

a(o,0) = [1...6
ej2wd((\/ﬁ—1)sin9+(\/ﬁ—l)sinqbcosé)//\ )

j2mwd(zsinf+y sin ¢ cos0) /X

whereOSxS\/N—landOSyS\/ﬁ—l./\represents
the carrier wavelength and d denotes the antenna spacing.

Ge (HCGQ) represents the radiation of RIS elements for the
(¢, s)th scatterer.

G. (057) =

where cos? pattern is used for reflectarrays and ¢ determines
the element gain [20].
We adopt the generic 5G path loss model for ng

LS = —20logy, (47”) —10n (1 +b (%))
0

x logyg (des) —

2(2q + 1)cos™ (93;) (3)
[21].

Xo, B

where d.s = ac + b represents the ray length of the
(¢, s)th path. n denotes the path loss exponent. b and f; denote
a model parameter and reference frequency, respectively.
X, ~CN(0,0,2) represents a shadow factor.

Similarly, the RIS-user k& channel hj, can be represented as

hi =4/Ge (917:7(];5) LLOS (¢L0Sa Hfgs)

hios

¢ 8.
DD By [Ge (008 Lida(ert. o) )
c=1s=1

hxLos

where C' and S represent the number of clusters and sub-ray
per cluster for the transmission link from the RIS to user,
respectively. 4§ = > - Bes ~ CN(0,1). Ge (02:F)

represents the RIS element gain. LC,;"'“ denotes the path loss.
4)25 (92?) is the azimuth (elevation) angle at the RIS.
The BS-user k channel dj, can be given by

_ dy,k di,k pdy,
d, = \V Ligsa ( LOS > HLOS)

dios
¢ 5
AN Besy/ LiFa (¢lF 00%) (6
c=1 s=1

dniros

where C' and S denote the number of clusters and sub-
ray per cluster for the transmission link from the BS to

user, respectively. 7 = /Eé ﬁcs ~ CN(0,1). Lf}gk
L=1

represents the path loss. d)d" (9? A ) denotes the azimuth (ele-
vation) angle at the BS.
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Fig. 2. The low-level shared multi-task learning frame.

Let @ = [e/%,e7%2 .. e/%V]T € CN denotes the reflecting
vector at the RIS, where 0;(: = 1,2,..., N) represents the
phase shift at ¢-th RIS element. Following [3], [5], we consider
the channel reciprocity under time-division duplexing mode,
where the downlink channel can be obtained by estimating
uplink channel. The received pilot signal y,, ,(t = 1,2,...,T)
in the ¢-th time slot at the BS for the k-th user can be
expressed as

Yt = (GTdiag(Ht)hZ + df)slc,t + Ny
= (6:G"diag(h}) + di)sp.t + nps (7)

where s;, ; is the transmitted pilot signals at the ¢-th time slot.
ng; € CM is white Gaussian noise. H;, = G diag(h}) €
CM*N is defined as the CC.

III. PROPOSED METHOD

A. Dataset Construction

When we keep RIS elements active, the received signal of
the BS include the direct signal and reflecting signal according
to (7). From the data-driven perspective, we can design a
end-to-end MTL model to realize the estimation of DC and
CC at once, which can avoid additional training overhead
for direct channels [4], [5]. Consequently, the total overhead
of joint channel estimation is equal to the pilot overhead
of CC estimation. Following the reflecting protocol of CC
estimation in [3], we generated the received pilot signal Y, €
CMXN ag the input data I, where T = [Re(Y ), Im(Y ;)] €
RM*NX2Z represents the real and imaginary part of Y.
Similarly, the label data Oy = [Re(d}),Im(d})] €
RM*2 and Oy = [Re(H;),Im(H})] € RM*XNx2 rep.
resent the real and imaginary part of the DC and CC,
respectively. Meanwhile, the received signal and the channel
data are normalized by the maximum absolute value of their
elements.

B. Multi-Task Learning

Fig.2 shows a low-level shared MTL frame [15], where
Task 1 layers and Task 2 layers are used to realize the CC
and DC estimation, respectively. Since the dimension of DC is
usually lower than CC, the difficulty of two channel estimation
tasks is also different for NN. Conventional methods use a
fixed uniform weight to combine a joint loss function, which is
unfair for CC estimation task. We combine different loss func-
tions of subtasks based on homoscedastic task uncertainty [22],
which can automatic learn the optimal weight by NN. The joint
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Fig. 3.

TABLE I
THE MULTI-TASK NETWORK WHEN M = 64 AND N = 256

Shared layers
CBR(64, 3)
DRSN-CS(64, 3)
DRSN-CS(64, 3)

Task 1 layers
CBR(64, 3)
Conv(2, 3),Tanh

Task 2 layers
CBR(64, 3, [1,4])
CBR(64, 3, [1,4])
CBR(64, 3, [1,4])

Conv(2, 3, [1,4]),Tanh

loss function of MTL can be represented as

1 1
Ligint (w,01,02)~ le(w) + ?Lg(w) + logo? +log o2
1 2
(8)

where w is the weight parameter of the network. o2(i = 1,2)
is a observation noise scalar of the i-th task and is a learnable
parameter by the NN. The loss function of the i-th task L;(w)
can be represented as

Li(w) = |ai — fi"(2)] ©)

where a; is the true channel for i-th subtask, and f;"(z) is
the output of the i-th subtask when x is the input data. In (9),
large o2 will decrease the contribution of L;(w), while smaller
o2 will increase its contribution. The whole objective function
is penalized by log o? and will be a constant when o2 is too
large.

C. Multi-Task Network Architecture

In the channel estimation of communication system, the
estimation accuracy is easily affected by noise. Soft thresh-
olding (ST) is the key step in signal denoising algorithm and
can be expressed as

r—T T>T

y=40 (10)

—T<x<T
rT+717 < —T

where = and y represent the input and output of ST,
respectively. 7 is the threshold.

It is a challenging problem to select an suitable threshold 7
in traditional algorithms. Fig.3 shows the DRSN with channel-
wise thresholds (DRSN-CS) block, where F,. denotes the
number of channel for feature map. Motivated by attention
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mechanism in DL, ST is inserted as a specialized network
layers into the classic residual unit [23], which can automati-
cally learn the 7 in the DRSN-CS block.

In the shared layers of MTL model, a baseline convolu-
tional block, composed of convolutional layer, batch normal-
ization (BN) layer and LeakyReLU activation layer (CBR),
is used to extract the low-level feature. Two DRSN-CS blocks
are stacked to learn the deep features and further ease the
influence of noise. The CC estimation is completed by the
Task 1 layers, where a CRR convolutional layer is used
to extract the CC feature map and a convolutional layer
is designed to reduce the channel dimension of the output,
respectively. Since the dimension of DC is lower than the
dimension of the received signal, convolutional layers with
(Fa1, Fyp) strides are used to reduce the size of feature map in
the Task 2 layers, where the number of convolutional layers is
Ly = loggd .- In the output of network, the Tanh activation is
used to constraint the range of output data. Table I summarized
the whole network architecture of MTL model. The first num-
ber in the bracket is the number of convolutional kernels Fp,
and the second number represents the size of convolutional
kernel (F!, F?), where the shape of convolutional kernel is
square in our MTL model, i.e. Fy = F! = F? = 3. The third
number in some brackets represents (Fyy, Far) = (1,4).

IV. NUMERICAL SIMULATION

In the simulation, we set M = 8 x 8, N = 16 x 16
and K = 6. The mmWave communication frequency band
is set as 28 GHz and 73 GHz. C(C,C,C) is modeled by
Poisson distribution C' ~ max{P()\,),1}, where \, = 1.8
in 28 GHz and \, = 1.9 in 73 GHz [18]. S.(S., S., S.) ~
U[1,30] follows uniform distribution between 1 and 30 [24].
We consider the path loss model of Urban Microcellular
environment, where n = 3.19, b = 0 and ¢ = 8.2 dB for
NLOS component, while n = 3.19 and o = 3.1 dB for LOS
component [21]. We generated 5 x 103 paired samples for each
user. Consequently, the number of total sample is 3 x 10* and
are randomly divided into training, test and validation sets by
the ratios of 60%, 20%, and 20%. We used the normalized
mean squared error (NMSE) as the performance evaluations
metric, i.e., NMSEx, = E[||Hy — Hyl[o/||H|[2).

The NMSE performance of the MTL-based channel esti-
mation scheme is compared with the LS [3]-[5], LMMSE,
orthogonal matching pursuit (OMP) [8] and STL [14]. Table. II
summarized the model size, parameters, the number of addi-
tion and multiplication (Mult-Adds) and pilot overhead of STL
and MTL. In Fig.4 and Fig.5, the “—ON/OFF” and“—DFT”
denote that the reflecting vector © follows ON/OFF protocol
and DFT protocol, respectively. STL-OFF denotes the RIS is
turned off when we estimate DC [14].

Fig.4 and Fig.5 show the NMSE performance of different
algorithms for DC and CC estimation, respectively, where the
estimation accuracy of MTL is superior to other schemes in
the most of SNR ranges. The channel estimation performance
depends on the RIS reflection protocol and estimator in
RIS-aided communication system. Although the DFT protocol
has been proved to be the optimal reflection protocol, the
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Fig. 4. The NMSE performance of DC estimation.
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Fig. 5. The NMSE performance of CC estimation.

conventional LS and LMMSE estimator are sub-optimal. With
the increase of SNR, the performance gap between MTL
and conventional schemes is closing. The channel estimation
can be regarded as a high-dimensional regression task, while
data-driven neural network can be regarded as a universal
approximator. When the noise is small enough, e.g., SNR >
20 dB, the approximate error of neural network is larger than
the inverse of noise in LS algorithm.

Although the training data Ipc of STL-OFF avoid the
interference of CC in the DC estimation, the data size Ipc €
RM*2 of STL-OFF is less than I € RM*N*2 of STL-ON and
MTL. The performance improvement of DL depends on more
sufficient data. However, larger dimension of input data bring
more computation overhead, so the Mult-Adds of STL-ON is
much larger than STL-OFF in Table II. The NMSE of MTL is
similar with STL, while STL needs two independent networks
to estimate DC and CC, respectively. Consequently, the total
parameters and computation complexity of STL are larger than
MTL. Since the sparsity is variable and relatively large in
the clustered statistical MIMO channel model, the estimation
performance of OMP is limited.

In Fig.6, the NMSE performance has been compared for
different network architectures in shared layers. The CNN and
ResNet have the similar estimation accuracy, while DRSN
architecture can achieve higher estimation accuracy under
lower SNR. The DRSN introduced the branch of learnable ST
in classic residual unit, which can degrade the effect of noise
on channel estimation. According to the cluster MIMO channel
model and 5G path loss model, the change of communication
frequency band will affects the distribution of cluster C' and
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Fig. 6. The NMSE performance of different network architectures.

TABLE II
THE TRAINING OVERHEAD FOR DIFFERENT NETWORKS

MTL STL-ON STL-OFF
Model size(MB) 1.21 0.78+1.06 0.78 x2
Parameters(K) 316.55 204.24+4278.36 204.24x2
Mult-Adds(G) 3.28 3.06+2.63 3.06+0.012
Pilot overhead N N N+1
0 T T
—<—H (28GHz)
« —p—H (73GHz)
Sr -4 -d(28GHz) | |
- b —d (73GHz)

NMSE (dB)

30 | | | | | | )
-10 -5 0 5 10 15 20 25 30
SNR(dB)

Fig. 7. The NMSE performance under different frequency bands.

the path loss L. s. Fig.7 shows the robustness of MTL model
for different frequency bands, where the trained MTL model
under 28 GHz can work well on 73 GHz.

V. CONCLUSION

To improve the estimation accuracy of conventional algo-
rithms and reduce the training overhead of STL, we pro-
posed a MTL-based channel estimation scheme for RIS-aided
mmWave multi-user communication system, which can realize
DC and CC estimation at the same time slots by the end-to-end
learning. The MTL can achieve similar NMSE performance as
STL with less training overhead. Meanwhile, the robustness
of MTL model has been verified in different frequency bands.
In the future work, we will extend the MTL model to the
receiver with multiple antennas communication scenario.
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