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Abstract—A joint cascaded channel estimation scheme is pro-
posed for simultaneously transmitting and reflecting reconfig-
urable intelligent surface (STAR-RIS) systems with hardware
imperfections. In particular, the practical hybrid near- and far-
field electromagnetic radiation with spatial non-stationarity is
investigated. By exploiting the cascaded channel correlations
between different users and between different STAR-RIS ele-
ments, a multi-task learning (MTL)-based channel estimation
framework is proposed. This framework is capable of estimating
the cascaded channels for transmission and reflection simulta-
neously based on noisy observations of the mixture channel.
Following the design guideline of the proposed MTL framework,
an efficient multi-task network (MTN) is developed to reconstruct
the high-dimensional channels with limited pilot overhead. In the
proposed MTN architecture, a mixed convolution and multilayer
perception module is exploited to capture the effective hybrid-
field channel features. This module integrates the locality bias
modeling of the channel-wise convolution and the long-range
dependency modeling of MLP, which finely learns both local
spatial correlations and specific spatial non-stationarity of the
hybrid-field cascaded channels. Numerical results show that the
proposed MTN achieves superior channel estimation accuracy
with less training overhead compared with the existing state-of-
the-art benchmarks, in terms of required pilots, computations,
and network parameters1.

Index Terms—Channel estimation, multi-task learning, re-
configurable intelligent surfaces, simultaneous transmission and
reflection.

I. INTRODUCTION

METAMATERIA-based reconfigurable intelligent surface
(RIS) has been regarded as a promising multiple-input

multiple-output candidate to construct smart radio environ-
ments (SREs) with low cost and energy consumption [2]. The
typical reflection-only RISs only reflect the incident signal to
desired user equipments at the same side (referred to as UE𝑟 ),
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which only enables a half-space SRE. To break the limitation
of reflection-only RISs and achieve the full-space SREs, the
novel concept of simultaneously transmitting and reflecting
RISs (STAR-RISs) has been proposed to facilitate the full-
space SRE [3]–[5]. More particularly, the signal imping on the
STAR-RIS is divided into two parts with the law of energy
conservation. One part of the signal is reflected to UE𝑟 at
the same side as the incident wave, while the other part is
transmitted to users at the opposite side (referred to as UE𝑡 ).

To satisfy the demand of innovative applications supported
by the sixth generation communications, e.g., virtual reality,
holographic projections, etc, the antenna array will be further
scaled up to empower the extremely large-scale antenna array
(ELAA) communications [6]. However, as the number of
antennas or RIS elements grows large and the communication
frequency becomes high, the widely used far-field radiation as-
sumptions are no longer valid. Instead, near-field propagation
is more likely to occur, due to the expansion of the array aper-
ture and the increase of frequencies [7]. Note that the boundary
of near-field region in RIS systems is more strict compared
with conventional ELAA systems, which is determined by
the harmonic mean of the transmitter-RIS distance and the
RIS-receiver distance [6]. The general transmission schemes
toward future near-field communications are becoming the new
research branch. In particular, the accurate channel estimation
is one of the most fundamental research problems [8].

In passive RIS systems, the estimation of high-dimensional
cascaded channels is an inherent barrier due to the unac-
ceptable pilot overhead. Compared with the channel estima-
tion in reflection-only RIS systems, the channel estimation
in STAR-RIS systems necessitates the consideration of both
transmission and reflection channels, along with the practical
operating protocols [9]. In near-field communications, specific
channel characteristics, e.g., the spherical wavefront, variations
angle of arrival/departure (AoA/AoD) across array elements,
and spatial channel non-stationarity [10], should be taken
into account. Moreover, a practical case of radiation field,
i.e., hybrid far- and near-field, is highly likely to happen
in practical ELAA systems [6], [11]. Specifically, the au-
thors in [6] presented two typical hybrid-field communica-
tion scenarios. Firstly, in the communication environment
with dynamic scatterers, some scatterers are far away from
ELAA equipments, while others may exist in the near-field
region. Secondly, in ultra-wideband systems, the signal at
low frequencies is propagating in the far-field region, while
others at high frequencies may operate in the near-field region.
Consequently, the hybrid-field communications is practical and
crucial, prompting a compelling need for a comprehensive
investigation into cascaded channel estimation in hybrid-field

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3402619

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: China University of Petroleum. Downloaded on August 23,2024 at 02:46:56 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/WiCi-Lab/MTN


2

STAR-RIS systems.

A. Related Works

1) Far-field channel estimation in RIS systems: Previous
studies on channel estimation in RIS systems primarily focus
on the far-field electromagnetic wave radiation. These studies
have yielded diverse design concepts aimed at mitigating the
pilot overhead requirements for high-dimensional cascaded
channel estimation [8]. For instance, a semi-passive channel
estimation framework was conceived in [12] and [13], where
a limited number of RF chains were equipped at the RIS
to carry out some specific channel estimation tasks, such as
AoA acquisition. To reduce the pilot overhead and enhance
the channel estimation accuracy for pure-passive RISs, the
authors of [14] and [15] proposed leveraging the nonlinear
mapping capabilities of deep learning (DL) models to establish
a data-driven channel estimation framework. Furthermore, the
authors of [16] and [17] developed compressed sensing (CS)
algorithms that capitalize on the sparsity properties exhibited
by cascaded channels within specific transform domains, such
as the angular domain, thus reducing the pilot overhead.

2) Near-field channel estimation in RIS systems: When
comes to near-field communications, the practical spherical
wavefront radiation restricts the effectiveness of the existing
far-field channel estimation schemes. For instance, the widely
used CS algorithms based on the far-field channel sparsity
in the angular domain are not applicable to the near-field
channel estimation, because the sparsity of near-field channels
in the angular domain no longer holds due to the severe
energy spreading effect. As a remedy, the authors of [18] and
[19] redesigned the CS algorithms for near-field RIS systems,
where the sparsity of near-field channels in the polar domain
was leveraged to recover the channels. The above channel
estimation schemes all adopted the CS-based sparsity channel
estimation framework, which heavily depends on the pure
sparsity of the wireless channel in a specific transform domain,
e.g., the polar-domain presentation. However, the channel spar-
sity may exist between different domains in practice, which
makes these given signal-independent sparse basis difficult
to adequately capture the complex sparse structure within
the channel. These correlation and sparse structures become
even more complex when the practical hybrid-field channels is
considered for RIS systems, which make it more challenging to
determine the appropriate basis that guarantees an acceptable
channel reconstruction accuracy.

3) Hybrid-field channel estimation in ELAA systems: Re-
cently, some researches have studied the hybrid-field channel
estimation in ELAA systems. In [20], two different channel
transform matrices, i.e., the angular-domain and polar-domain
transform matrix, were designed to individually estimate the
near- and far-field path components successively for ELAA
systems. However, in this framework, the near-field path
estimation relies on the prior far-field path estimation, thus
resulting in the inevitable error propagation between the near-
and far-field channel estimation. As an innovative contribution,
a model-driven fixed point network was proposed to estimate
the hybrid-field Terahertz channel in [21], which avoids the

successive path estimation between near- and far-field path
components. Considering the hybrid-field cascaded channel
estimation for RIS systems in [22], a U-shaped multilayer
perceptron (MLP) network is proposed to improve the high-
dimensional channel estimation performance.

B. Motivations and Contributions

In contrast to the channel estimation in RIS systems, the
channel estimation design in STAR-RIS systems is related to
the dedicated operating protocol of STAR-RIS. Specifically,
time switching (TS) and energy splitting (ES) are dominated
operating protocols for the STAR-RIS [9]. In the TS protocol,
the STAR-RIS periodically switches all elements between
the transmitting mode and the reflecting mode in different
orthogonal time slots. Hence the channel estimation for the
TS protocol is similar to that in reflecting-only RIS systems.
In the ES protocol, the incident signal on each element of the
STAR-RIS can be reflected and transmitted with an ES ratio at
the same time slots, which can provide higher communication
degree of freedom. Since the ES strategy reduces the received
signal strength at UE 𝑓 (∀ 𝑓 ∈ {𝑡, 𝑟}) and the practical phase
shift model may be coupled, the channel estimation accuracy
can be relatively lower than the TS protocol [23]. Nevertheless,
the simultaneously transmitting and reflecting signal transmis-
sion in the ES protocol provides the potentiality for reducing
pilot overhead of the multi-user channel estimation, which
has not been exploited well in STAR-RIS systems. Compared
to TS protocol-based STAR RIS systems, the received pilot
signal in ES protocol-based STAR-RIS systems consists of
the transmitting and reflecting signal from UE𝑡

𝑘
and UE𝑟

𝑘
at

the same transmission slot, which can support the realization
of the joint transmitting and reflecting channel estimation by
constructing an end-to-end deep learning model.

Although the channel estimation has been widely investi-
gated for reflection-only RIS systems, the design of channel
estimation schemes in STAR-RIS systems is still at a pre-
liminary stage due to the aforementioned unique challenges,
especially for the hybrid-field communications. In [23], a least
square (LS)-based channel estimation scheme was derived
for STAR-RIS systems, which was applied to both the TS
and ES protocols. However, as a classic linear estimator, the
performance of the LS estimation is limited, especially for
the severe communication noise and the non-linear hardware
imperfections in practical communication systems. And, even
more crucially, the required pilot overhead of the LS estimator
is expensive for the extremely large-scale STAR-RIS. Specifi-
cally, the minimum pilot overhead is 𝐾𝑁 for in [23], where 𝑁
and 𝐾 denote the number of STAR-RIS elements and UEs in
a paired user group (UG), respectively. Moreover, in hybrid-
field STAR-RIS systems, the specific sparse representation of
the cascaded channel is hard to obtain due to the hybrid-
field radiation and spatial non-stationarity. Hence, the channel
estimation performance of the existing CS algorithms will be
degraded [18], [19]. In our previous work [22], we proposed
a U-shaped MLP architecture to capture the channel spatial
non-stationarity in reflection-only RIS systems, which has
better channel reconstruction performance than conventional
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channel estimation networks, such as convolutional network
architectures in [15]. However, the required pilot overhead
in this framework is still proportional to 𝐾 for multi-user
RIS systems. In addition, the network parameters of the U-
shaped MLP may be redundant due to the dense connections
of neurons in the MLP architecture.

Against the above background, we investigate the hybrid-
field channel estimation for STAR-RIS systems. In particular,
to address the limitation of the existing schemes, we propose
a multi-task learning (MTL)-based joint channel estimation
framework. Our contributions are summarized as follows.

• We study the hybrid-field cascaded channel estimation for
STAR-RIS aided multi-user millimeter-wave (mmWave)
systems with hardware imperfections. We characterize the
unique cascaded hybrid-field radiation and present the
spatial non-stationarity caused by the different types of
visibility regions (VRs), i.e., clustered VRs and user VRs.
In contrast to the hybrid-field channel modeling in con-
ventional ELAA systems, the specific cascaded channel
characteristics in STAR-RIS systems are revealed.

• We propose an MTL-based joint cascade channel es-
timation framework, which leverages the hybrid-field
cascaded channel correlations between different users and
between different STAR-RIS elements. To realize the
loss balancing of multi-task optimization in the MTL
framework, we design an adaptive joint loss function
to alleviate the multi-task competition between different
subtasks, which not only utilizes the ES prior information
but also introduces an learnable scalar to allocate the
adaptive weight for different subtasks.

• Based on the design guideline of the proposed MTL
framework, we exploit an efficient multi-task network
(MTN) to precisely reconstruct hybrid-field cascaded
channels. In the proposed MTN architecture, a mixed
convolution and multilayer perception (ConvMLP) mod-
ule is exploited to capture the effective features of the
hybrid-field channels. Specifically, we first design the
channel-wise convolution module to model the locality
spatial correlations of the STAR-RIS channel. Then, the
axial MLP architecture is constructed to carry out the
global spatial modeling of the non-stationary cascaded
channels. Furthermore, we design the hierarchical net-
work backbone to learn the implicit sparsity of the
mmWave channels.

• Compared with the existing traditional estimator [23], the
required pilot overhead of the proposed MTN architecture
is reduced to 𝑁/Γ, in which Γ ≥ 1 is a sampling
interval in the STAR-RIS element domain. For the widely
used single-task learning (STL) models in RIS channel
estimation, 𝐾 independent STL networks are required to
estimate 𝐾 cascaded channels. However, the proposed
MTN architecture can jointly estimate the transmitting
and reflecting channels, which significantly reduces the
training overhead of the multi-user cascaded channel
estimation and improves the channel estimation accuracy.

STAR-RISReflecting space Transmitting space

Paired user group Kp

Paired user group 1

...

... ...
...

...

...
...
...

c-th cluster

(c, s)-th scatterer

X

Y

Z

Near-field region

Near-field region

Spherical 

wave

Uniform

wave

UEr
UEt

UEr
UEt

Hybrid-field region

AP

Fig. 1. STAR-RIS assisted hybrid-field multi-user communications.

C. Organizations and Notations

Organizations: The remainder of this paper is organized as
follows. Section II introduces the hybrid-field channel model-
ing and system model of STAR-RIS systems. In Section III,
we propose the MTL framework to realize the joint cascaded
channel estimation. Based on the proposed MTL framework,
we further design the efficient MTN architecture in Section IV.
Section V provides numerical results of the proposed channel
estimation scheme. Lastly, Section VI summarizes this work
and looks forward the future research direction.

Notations: A𝑇 and A𝐻 denote the transpose and conjugate
transpose of matrix A, respectively; ⌊𝑥⌋ denotes the smallest
integer that is greater than or equal to 𝑥; 𝑎∗ denotes the
conjugate of complex number 𝑎; diag(a) denotes the diagonal
matrix with vector a; I𝑎 is the 𝑎 × 𝑎 identity matrix; |·|,
∥·∥, and ∥·∥𝐹 denote the ℓ1, ℓ2, and Frobenius norm, respec-
tively; ∝ denotes the proportionality relation. ⊙ and ⊗ denote
the Hadamard product and convolution, respectively. ℜ(A)
and ℑ(A) denote the real and imaginary components of the
complex-value matrix A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first provide the field boundary in STAR-
RIS systems. Then, the hybrid-field cascaded channel model-
ing is presented. Lastly, we formulate the cascaded channel
estimation problem in the ES protocol, in which the practical
signal model with hardware imperfection is investigated.

A. Field Boundary in STAR-RIS systems

As shown in Fig. 1, an 𝑁s-element (𝑁s = 𝑁s
1 × 𝑁

s
2) STAR-

RIS operating in ES mode and equipped with a uniform planar
array (UPA) is deployed to enhance an indoor communication
system, wherein there exists an 𝑀-element (𝑀 = 𝑀1 × 𝑀2)
wireless access point (AP) equipped with a UPA and 𝐾u

single-antenna UEs. Considering the high channel correlations
between the sub-wavelength metamaterial elements, the typical
element grouping strategy is commonly adopted to reduce the
required control and training overhead in metasurface-based
communication systems [8], [23], in which the adjacent meta-
material elements are grouped into a sub-surface to share a
common phase-shift. In this work, the STAR-RIS elements are
divided into 𝑁 = 𝑁1×𝑁2 sub-surfaces, each of which consists
of 𝜈 = (𝑁s

1/𝑁1) × (𝑁s
2/𝑁2) adjacent elements. Furthermore,
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Fig. 2. Electromagnetic radiation fields and VRs distribution. (a) Hybrid-field
radiation at the AP, in which the marked regions with light red color denote the
clustered VRs in the scatterer (𝑐, 𝑠)→AP link; (b) Near-field radiation at the
STAR-RIS, in which the marked regions with light red and green color denote
the user VRs in UE𝑘→STAR-RIS and clustered VRs in STAR-RIS→scatterer
(𝑐, 𝑠) links, respectively, while the marked regions with dark green color
denote the overlapping regions of multiple VRs at the STAR-RIS.

𝐾u UEs are equally divided into 𝐾p paired user groups (UGs),
composed of 𝐾 = 𝐾u/𝐾p UEs. In the 𝑘p-th (1 ≤ 𝑘p ≤ 𝐾p)
UG, the number of UE𝑡s in the transmitting space of the
STAR-RIS is 𝐾 𝑡 , while 𝐾𝑟 = 𝐾 − 𝐾 𝑡 UE𝑟 s are located on
the reflecting space. To mitigate the inter-group interference
in STAR-RIS systems, the nearest UE 𝑓 (∀ 𝑓 ∈ {𝑡, 𝑟}) are paired
into the same UG according to geometric locations.

Both AP and STAR-RIS lie on the plane perpendicular to
the 𝑥𝑦-plane, whose array center coordinate are set to cA =(
𝑥A, 𝑦A, 𝑧A) and cR =

(
𝑥R, 𝑦R, 𝑧R) , respectively. Let Δ𝑚 =

Δ𝑚1 = Δ𝑚2 and Δ𝑛 = Δ𝑛1 = Δ𝑛2 denote the distance between
two adjacent antennas (elements) at the AP and the STAR-RIS,
respectively. Hence, the coordinate of the AP antenna (𝑚1, 𝑚2)
is cA

𝑚1 ,𝑚2 =

(
𝑥A, 𝑦A + (𝑚1 − 𝑀1+1

2 )Δ𝑚, 𝑧A + (𝑚2 − 𝑀2+1
2 )Δ𝑚

)
.

Accordingly, the coordinate of the STAR-RIS element (𝑛1, 𝑛2)
is cR

𝑛1 ,𝑛2 =

(
𝑥R, 𝑦R + (𝑛1 − 𝑁1+1

2 )Δ𝑛, 𝑧R + (𝑛2 − 𝑁2+1
2 )Δ𝑛

)
. The

coordinate of UE𝑘 cU
𝑘

=

(
𝑥U
𝑘
, 𝑦U
𝑘
, 𝑧U
𝑘

)
are randomly dis-

tributed around the STAR-RIS. The coordinate of scatterer 𝑠
(1 ≤ 𝑠 ≤ 𝑆𝑐) in cluster 𝑐 (1 ≤ 𝑐 ≤ 𝐶s) is denoted as cS

𝑐,𝑠 =(
𝑥S
𝑐,𝑠 , 𝑦

S
𝑐,𝑠, 𝑧

S
𝑐,𝑠

)
between the STAR-RIS and the AP. To allevi-

ate the severe multiplicative fading effect of the cascaded link,
the STAR-RIS is deployed on the wall near the UEs forming
the line-of-sight (LOS) channel [24]. Hence, UEs are likely
communicating in the near-field region of the STAR-RIS,
which is determined by the Rayleigh distance 𝑍 . According
to the near-field criterion in [6], the near-field region for RIS-
aided systems is given by

𝑑R
𝑐,𝑠𝑑

UR
𝑘

𝑑R
𝑐,𝑠 + 𝑑UR

𝑘

< 𝑍 =
2𝐷2

𝜆
, (1)

where 𝑑R
𝑐,𝑠 and 𝑑UR

𝑘
denote the distance from the STAR-RIS

to scatterer (𝑐, 𝑠) and the distance from the UE 𝑓

𝑘
to the STAR-

RIS, respectively. Parameter 𝜆 is the carrier wavelength and
𝐷 is the equivalent array aperture of STAR-RIS systems.

According to (1), it can be further implied that as long as
any of 𝑑R

𝑐,𝑠 and 𝑑UR
𝑘

is shorter than the Rayleigh distance 𝑍 , the
communication link is operating in the near-field region. On
the other hand, As illustrated in Fig. 2(a), the environmental
scatterers may be distributed in the near- or far-filed region of
the AP [20]–[22], respectively. Hence, the near- and far-field

signal components will coexist in the practical hybrid-field
STAR-RIS systems.

B. Hybrid-Field Channel model

Following the 3GPP standard in the indoor mmWave com-
munications [25], we adopt the general clustered statisti-
cal multiple-input multiple-output (MIMO) channel modeling
framework, in which the STAR-RIS→AP channel G ∈ C𝑀×𝑁

from the STAR-RIS to the AP is given by

G = 𝛾

𝐶s∑︁
𝑐=1

𝑆𝑐∑︁
𝑠=1

𝜍𝑐,𝑠

√︃
𝑅
𝐺r
𝑐,𝑠𝐿

𝐺r
𝑐,𝑠a𝑐,𝑠b𝑇𝑐,𝑠 , (2)

where the number of clusters 𝐶s and scatterers 𝑆𝑐 in the
cluster 𝑐 are characterized by Poisson distribution 𝐶s ∼
max{𝑃(𝜆𝑝), 1} and the uniform distribution 𝑆𝑐 ∼ U[1, 𝑠𝑐],
respectively. Parameter 𝜆𝑝 is related to the communication

frequency 𝑓𝑐. 𝛾 =

√︂
1∑𝐶s

𝑐=1 𝑆𝑐
is a normalization factor. The

complex gain 𝜍𝑐,𝑠 follows 𝜍𝑐,𝑠 ∼ CN(0, 1). Parameters 𝐿𝐺r
𝑐,𝑠

and 𝑅𝑐,𝑠 denote the path loss and STAR-RIS element gain
for scatterer path (𝑐, 𝑠), which follow the 5G mmWave path
loss model in Indoor Hotspot environment and the reflectarray
radiation pattern [24], respectively. The array response b𝑐,𝑠 ∈
C𝑁×1 and a𝑐,𝑠 ∈ C𝑀×1 denote the near-field transmitting
response at the STAR-RIS and the hybrid-field receiving
response at the AP, respectively. Specifically, the generic near-
field array response b𝑛𝑐,𝑠 without the spatial non-stationarity at
the STAR-RIS can be expressed as [22], [26]

bn
𝑐,𝑠

(
𝑑R
𝑐,𝑠

)
=

[
𝑒− 𝑗2𝜋𝑑

R
𝑐,𝑠 (1,1)/𝜆, · · · , 𝑒− 𝑗2𝜋𝑑R

𝑐,𝑠 (1,𝑁2 )/𝜆,

· · · , 𝑒− 𝑗2𝜋𝑑R
𝑐,𝑠 (𝑁1 ,1)/𝜆, · · · , 𝑒− 𝑗2𝜋𝑑R

𝑐,𝑠 (𝑁1 ,𝑁2 )/𝜆
]
,

(3)

where 𝑑R
𝑐,𝑠 (𝑛1, 𝑛2) =



cR
𝑛1 ,𝑛2 − cS

𝑐,𝑠



 denotes the distance from
scatterer (𝑐, 𝑠) to the (𝑛1, 𝑛2)-th STAR-RIS element.

As shown in Fig. 2(b), different parts of the STAR-RIS
elements may view different scatterers (terminals) due to
the limitation of VRs, which results in the spatial non-
stationarity of the hybrid-field STAR-RIS channel. The
general VR definition at the UPA can be expressed as
Ω =

{
[ ®𝑐1 − ®𝑙1/2, ®𝑐1 + ®𝑙1/2], [ ®𝑐2 − ®𝑙2/2, ®𝑐2 + ®𝑙2/2]]

}
, in which

( ®𝑐1, ®𝑐2) and (®𝑙1, ®𝑙2) denote the VR center and length at
different directions, respectively. The VR length (®𝑙1, ®𝑙2) can
be characterized by the Lognormal distribution [27], [28], i.e.,
®𝑙1 ∼ LN( 𝜇̄1, 𝜎̄1) and ®𝑙2 ∼ LN( 𝜇̄2, 𝜎̄2), where parameters 𝜇̄
and 𝜎̄ denote the mean and standard deviation of logarithmic
values, respectively. For the VRs at the STAR-RIS, two
different types of VRs, i.e., cluster VRs ΩR

𝑐 caused by the
near-field scatterers [22] and user VRs Ω𝑘 for different UE𝑘
[10], are comprehensively studied. Specifically, the VR ΩR

𝑐 of
cluster 𝑐 in STAR-RIS→scatterer (𝑐, 𝑠) link is given by ΩR

𝑐 ={
[ ®𝑐R,1
𝑐 − ®𝑙R,1𝑐 /2, ®𝑐R,1

𝑐 + ®𝑙R,1𝑐 /2], [ ®𝑐R,2
𝑐 − ®𝑙R,2𝑐 /2, ®𝑐R,2

𝑐 + ®𝑙R,2𝑐 /2]]
}
,

in which the VR center (®𝑐R,1
𝑐 , ®𝑐R,2

𝑐 ) follows the independent
uniform distribution, i.e., ®𝑐R,1

𝑐 ∼ U[®𝑙R,1/2, 𝑁1 − ®𝑙R,1/2] and
®𝑐R,2
𝑐 ∼ U[®𝑙R,2/2, 𝑁2 − ®𝑙R,2/2]. Furthermore, the VR cover
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vector 𝑣(ΩR
𝑐 ) ∈ C𝑁×1 at the STAR-RIS for cluster 𝑐 can be

expressed as[
𝑣(ΩR

𝑐 )
]
(𝑛1 ,𝑛2 ) =

{
1, if (𝑛1, 𝑛2) ∈ ΩR

𝑐 ,

0, else. (4)

Considering the spatial non-stationarity caused by the VR
cover vector, the equivalent array response at the STAR-RIS
is given by b𝑐,𝑠 = bn

𝑐,𝑠 ⊙ 𝑣(ΩR
𝑐 ).

Since the far- and near-field scatterers coexist in the around
of the AP, the array response a𝑐,𝑠 depends on the distance 𝑑A

𝑐,𝑠

from scatterer (𝑐, 𝑠) to the AP [22], which is given by

a𝑐,𝑠 =
{

af
𝑐,𝑠

(
𝜙A
𝑐,𝑠 , 𝜑

A
𝑐,𝑠

)
, if 𝑑A

𝑐,𝑠 > 𝑍,

an
𝑐,𝑠

(
𝑑A
𝑐,𝑠

)
⊙ 𝑣

(
ΩA
𝑐

)
, otherwise. (5)

where the definition of the near-field array response a𝑛𝑐,𝑠
is similar to bn

𝑐,𝑠 in (3), and 𝑣(ΩA
𝑐 ) denotes the VR cover

vector at the AP for cluster 𝑐. The definition of VR ΩA
𝑐

of cluster 𝑐 in scatterer (𝑐, 𝑠)→AP link is given by ΩA
𝑐 ={

[ ®𝑐A,1
𝑐 − ®𝑙A,1𝑐 /2, ®𝑐A,1

𝑐 + ®𝑙A,1𝑐 /2], [ ®𝑐A,2
𝑐 − ®𝑙A,2𝑐 /2, ®𝑐A,2

𝑐 + ®𝑙A,2𝑐 /2]]
}
,

in which the VR center follows ( ®𝑐A,1
𝑐 ∼ U[®𝑙A,1/2, 𝑀1 −

®𝑙A,1/2], ®𝑐A,2
𝑐 ∼ U[®𝑙A,2/2, 𝑀2−®𝑙A,2/2]). The far-field response

af at the AP is given by [24]

af
𝑐,𝑠

(
𝜙A
𝑐,𝑠, 𝜑

A
𝑐,𝑠

)
=

[
1, · · · , 𝑒 𝑗2𝜋Δ𝑚(𝑥𝑠𝑖𝑛𝜑A

𝑐,𝑠+𝑦 sin 𝜙A
𝑐,𝑠 cos 𝜑A

𝑐,𝑠 )/𝜆,

· · · , 𝑒 𝑗2𝜋Δ𝑚( (𝑀1−1)𝑠𝑖𝑛𝜑A
𝑐,𝑠+(𝑀2−1) sin 𝜙A

𝑐,𝑠 cos 𝜑A
𝑐,𝑠 )/𝜆

]
, (6)

where 0 ≤ 𝑥 ≤ 𝑀1 − 1, 0 ≤ 𝑦 ≤ 𝑀2 − 1, 𝜙A
𝑐,𝑠 and 𝜑A

𝑐,𝑠 denotes
the azimuth and elevation of AoA for scatterer (𝑐, 𝑠) at the AP,
respectively. In the conventional far-field radiation assumption,
the imping signals can be approximated as the uniform plane
wave, in which af

𝑐,𝑠 only depends on the identical AoA/AoD.
For the LOS dominated UE𝑘→STAR-RIS link, the receiv-

ing array response u𝑘 at the STAR-RIS is expressed as

u𝑘
(
𝑑UR
𝑘

)
=

[
𝑒− 𝑗2𝜋𝑑

UR
𝑘

(1,1)/𝜆, · · · , 𝑒− 𝑗2𝜋𝑑UR
𝑘

(1,𝑁2 )/𝜆,

· · · , 𝑒− 𝑗2𝜋𝑑UR
𝑘

(𝑁1 ,1)/𝜆, · · · , 𝑒− 𝑗2𝜋𝑑UR
𝑘

(𝑁1 ,𝑁2 )/𝜆
]
, (7)

where 𝑑UR
𝑘

(𝑛1, 𝑛2) =


cR
𝑛1 ,𝑛2 − cU

𝑘



 denotes the distance from
the UE𝑘 to the (𝑛1, 𝑛2)-th STAR-RIS element.

The definition of user VR in UEk→STAR-RIS link is given
by Ω𝑘 =

{
[ ®𝑐1
𝑘
− ®𝑙1

𝑘
/2, ®𝑐1

𝑘
+ ®𝑙1

𝑘
/2], [ ®𝑐2

𝑘
− ®𝑙2

𝑘
/2, ®𝑐2

𝑘
+ ®𝑙2

𝑘
/2]

}
, in

which the VR center follows ( ®𝑐1
𝑘
∼ U[®𝑙1

𝑘
/2, 𝑁1 − ®𝑙1

𝑘
/2], ®𝑐2

𝑘
∼

U[®𝑙2
𝑘
/2, 𝑁2 − ®𝑙2

𝑘
/2]), and the VR length follows (®𝑙1

𝑘
∼

LN( 𝜇̄𝑘,1, 𝜎̄𝑘,1), ®𝑙2𝑘 ∼ LN( 𝜇̄𝑘,2, 𝜎̄𝑘,2)). Accordingly, the VR
cover vector 𝑣(Ω𝑘) for UE𝑘→STAR-RIS channel is given by

[𝑣(Ω𝑘)] (𝑛1 ,𝑛2 ) =

{
1, if (𝑛1, 𝑛2) ∈ Ω𝑘 ,

0, else. (8)

Hence, the UE𝑘→STAR-RIS channel h𝑘 is given by

h𝑘 =
√︃
𝑅h
𝑘
𝐿h
𝑘
u𝑘 ⊙ 𝑣(Ω𝑘), (9)

where 𝑅h
𝑘

and 𝐿h
𝑘

and denote the radiation gain of STAR-RIS,
the path loss, respectively.

Remark 1: Compared with the hybrid-field channel mod-
eling in conventional ELAA systems [20], [21], the hybrid-
field cascaded channel for STAR-RIS systems has different

characteristics. Firstly, the channel dimension is significantly
increased due to numerous passive STAR-RIS elements. Sec-
ondly, the hybrid-field radiation in STAR-RIS communications
is more complicated than ELAA systems, in which the near-
and far-field path components are aggregated in a cascaded
form instead of the addition form [22]. Finally, the spatial
non-stationarity of the channel is further aggravated in STAR-
RIS systems, where the VRs of UE𝑘→STAR-RIS link and
STAR-RIS→scatterers links need to be specially considered
except the VRs of scatterers→AP links. In Fig. 3, we present
the channel visualization with the spatial non-stationarity for
different radiation fields. Specifically, in the near-field MISO
channel of Fig. 3(a), the value of partial channel elements
is zero, which represents the non-visible region at the AP
for the given scatterers/users. In the pseudo near-field cas-
caded channel of Fig. 3(b), the zero-value blocks of the
cascaded channel matrix are randomly distributed along the
𝑁-dimension of STAR-RIS elements. This is because the near-
field radiation with spatial non-stationarity is only adopted
for UE𝑘→STAR-RIS link, while the STAR-RIS→AP link
utilizes the far-field assumptions [10]. In the near-field cas-
caded channel of Fig. 3(c), since the near-field radiation with
spatial non-stationarity is considered for both UE𝑘→STAR-
RIS and STAR-RIS→AP links, the zero-value blocks of the
cascaded channel matrix are randomly distributed along the
𝑁-dimension of STAR-RIS elements and 𝑀-dimension AP
antennas. In the hybrid-field cascaded channel in Fig. 3(d),
the far-field channel components in scatterers→AP paths intro-
duce the non-zero channel elements in the whole 𝑀-dimension
of AP antennas, while the near-field channel components
in scatterers→AP paths are only distributed in the partial
𝑀-dimension of AP antennas due to the presence of VRs.
Hence, we observe that the energy distribution of non-zero
blocks in the hybrid-field cascaded channel presents significant
difference along the 𝑀-dimension of AP antennas.

C. Problem Formulation

Let θ𝑡 = [𝛽𝑡1𝑒
𝑗 𝜃 𝑡1 , 𝛽𝑡2𝑒

𝑗 𝜃 𝑡2 , · · · , 𝛽𝑡
𝑁
𝑒 𝑗 𝜃

𝑡
𝑁 ]𝑇 ∈ C𝑁×1 and

θ𝑟 = [𝛽𝑟1𝑒
𝑗 𝜃𝑟1 , 𝛽𝑟2𝑒

𝑗 𝜃𝑟2 , · · · , 𝛽𝑟
𝑁
𝑒 𝑗 𝜃

𝑟
𝑁 ]𝑇 ∈ C𝑁×1 denote the

transmitting and reflecting vectors, respectively, in which the
ES ratio 𝛽𝑛 satisfies (𝛽𝑡𝑛)2 + (𝛽𝑟𝑛)2 = 1(𝑛 = 1, 2, · · · , 𝑁)
for the lossless STAR-RIS. We focus on the UE 𝑓

𝑘
→STAR-

RIS→AP(∀ 𝑓 ∈ {𝑡, 𝑟}) cascaded channel estimation, and the
orthogonal pilot transmission strategy is adopted for different
UGs. The received pilot signal y𝑞 ∈ C𝑀×1 in the 𝑞-th time
slot at the AP for the UG𝑘p is given by

y𝑞 =

𝐾∑︁
𝑘=1

Gdiag(θ𝑘𝑞)h𝑘𝑠𝑘,𝑞 + w𝑘,𝑞

=

𝐾∑︁
𝑘=1

Gdiag(h𝑘)θ𝑘𝑞𝑠𝑘,𝑞 + w𝑘,𝑞 , (10)

where θ𝑘 = θ𝑡 for 𝑘 ∈ {1, · · · , 𝐾 𝑡 }, while θ𝑘 = θ𝑟 for
𝑘 ∈ {𝐾 𝑡 + 1, · · · , 𝐾}. 𝑠𝑘,𝑞 denotes the transmitted pilot signal
and E[𝑠𝑘,𝑞𝑠∗𝑘,𝑞] = 1. w𝑘,𝑞 ∼ CN(0, 𝜎2I𝑀 ) represents the
Gaussian noise. We define H𝑘 = Gdiag(h𝑘) ∈ C𝑀×𝑁 as the
cascaded UE𝑘 → STAR-RIS → AP channel.
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Fig. 3. Visualization of spatial non-stationary channels for different radiation fields in specific communication scenarios. (a) Near-field MISO channel, (b)
Pseudo near-field cascaded channel, (c) Near-field cascaded channel, and (d) Hybrid-field cascaded channel in STAR-RIS systems. In the channel visualization,
the real part of the normalized channel vector/matrix is extracted. The element value of each channel entry is characterized based on RGB color space, in
which the channel elements that are not within the VR have zero value. The VR lengths at the STAR-RIS and the AP are set to ®𝑙1

𝑘
= ®𝑙R,1𝑐 = 𝑁1/2,

®𝑙2
𝑘
= ®𝑙R,2𝑐 = 𝑁2/2, ®𝑙A,1

𝑐 = 𝑀1/2, and ®𝑙A,2
𝑐 = 𝑀2/2, respectively. Accordingly, the VR centers are set to ( ®𝑐1

𝑘
, ®𝑐2

𝑘
) = ( ®𝑐R,1

𝑐 , ®𝑐R,2
𝑐 ) = (®𝑙R,1𝑐 /2 + 1, ®𝑙R,2𝑐 /2 + 1) , and

( ®𝑐A,1
𝑐 , ®𝑐A,2

𝑐 ) = (®𝑙A,1
𝑐 /2 + 1, ®𝑙A,2

𝑐 /2 + 1) , respectively.

In practical communication system, the hardware imperfec-
tions are non-negligible components due to the non-ideality of
the hardware. For the considered STAR-RIS assisted mmWave
systems, we investigate the coupled phase-shift model for
purely passive STAR-RIS hardware at first [29]. Then, the
hardware impairments (HWIs) imposed on both the transmit-
ting signal at the UE𝑘 and the received signal at the AP are
considered [30]. Specifically, the coupled STAR-RIS phase-
shift model is given by [29]

cos(𝜃𝑡𝑛 − 𝜃𝑟𝑛) = 0, 𝑛 = 1, 2, · · · , 𝑁. (11)

Then, the residual HWIs at the UE and the AP are integrated
to (10), which is given by

ỹ𝑞 =

𝐾∑︁
𝑘=1

H𝑘θ
𝑘
𝑞 (𝑠𝑘,𝑞 + 𝜂𝑘,𝑞) + w𝑞 + µ𝑞 , (12)

where 𝜂𝑘,𝑞 ∼ CN(0, (𝜌u
𝑘
)2) denotes the transmitted distortion

at the UE𝑘 , µ𝑞 ∼ CN(0, (𝜌a)2p𝑟 ) denotes the HWIs at the AP
with p𝑟 =

∑𝐾
𝑘=1 (H𝑘θ

𝑘
𝑞) (H𝑘θ

𝑘
𝑞)𝐻 , and parameters 𝜌u

𝑘
and 𝜌a

denote the error vector magnitude at UE𝑘 and AP, respectively.

Let 𝑄 denote the pilot transmission slots, thus the over-
all received pilot signals at the AP is given by Y =

[̃y1, ỹ2, · · · , ỹ𝑄]𝑇 ∈ C𝑄×𝑀 . Considering a two-user STAR-
RIS systems, i.e., 𝐾 = 2, a classic LS estimation of the
cascaded channel was proposed in [23], which is given by

Ĥ = [Ĥ𝑡 , Ĥ𝑟 ]𝑇 = V𝐻
(
VV𝐻

)−1
Y. (13)

Here, Ĥ 𝑓 ∈ C𝑀×𝑁 (∀ 𝑓 ∈ {𝑡, 𝑟}) denotes the cascaded channel
for the UE 𝑓 , and V ∈ C𝑄×𝐾𝑁 denotes the transmission pattern
matrix. For the ideal case without hardware imperfections, the
optimal V is the first 𝐾𝑁 columns of the 𝑄×𝑄 discrete Fourier
transform (DFT) matrix in the minimum variance unbiased
estimator.

Remark 2: In the existing LS estimator for STAR-RIS

systems [23], each UG only support a group paired UE𝑡 and
UE𝑟 . In this case, the pilot overhead 𝑄 in the LS estimation
is required to satisfy 𝑄 = 2𝑁 due to the full-rank condition.
For the general multi-user systems in this work, the total pilot
overhead 𝑄 can be summarized as 𝑄 ≥ 𝐾𝑁 in the LS esti-
mation, which is huge for STAR-RIS enabled ELAA systems.
In contrast to the mathematical model-based estimator, a more
intuitive data-driven solution can be provided for the STAR-
RIS channel estimation in the ES protocol. According to (12),
the collected pilot signals at the AP involve both transmitting
and reflecting channels of all users. Hence, we can directly
construct the mapping between the received mixture pilot
signals and multi-user channels by exploiting a data-driven
MTL framework, in which the required pilot overhead of the
MTL-based channel estimation scheme is independent to 𝐾 .

III. MULTI-TASK LEARNING-BASED JOINT CHANNEL
ESTIMATION FRAMEWORK

In this section, we first present the hybrid-field cascaded
channel correlations between different users and between
different STAR-RIS elements, which provides the theoretical
foundation to realize the joint transmitting and reflecting
channel estimation. Then, the MTL-based channel estimation
framework is proposed by developing the joint adaptive opti-
mization strategy, which simultaneously estimates the multi-
user cascaded channels with limited pilot overhead.

A. Channel Correlations in STAR-RIS Systems

In STAR-RIS systems, the transmitting user UE𝑡
𝑘

and
reflecting user UE𝑟

𝑘
communicate with the AP via the

same STAR-RIS. Hence, the cascaded channels H 𝑓

𝑘
(∀ 𝑓 ∈

{𝑡, 𝑟}) associated with UE𝑡
𝑘

and UE𝑟
𝑘

share the same STAR-
RIS→AP channel G. In [31], the multi-user channel corre-
lations is explicitly characterized as a scalar vector ℓ𝑘 =

[ℓ𝑘,1, · · · , ℓ𝑘,𝑁 ]𝑇 ∈ C𝑁×1. Specifically, suppose H𝑘,𝑛 ∈ C𝑀×1
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denote the cascaded channel from UE𝑘 to the AP via the 𝑛-th
RIS element. Firstly, 𝑁 pilots are used to estimate the cascade
channel Ĥ1 ∈ C𝑀×𝑁 of the first user. Then, the cascaded
channel Ĥ𝑘 (2 ≤ 𝑘 ≤ 𝐾) of the other users is converted to
estimate ℓ𝑘 , satisfying Ĥ𝑘,𝑛 = ℓ𝑘,𝑛Ĥ1,𝑛. In this work, we
propose an MTL framework to implicitly exploit the multi-
user correlations and directly realize the joint cascaded channel
estimation by utilizing the common pilots, which can avoid the
estimation overhead of the scalar vector ℓ𝑘 . Compared with
the STL-based channel estimation framework [13]–[15], the
MTL-based channel estimation model also avoid the additional
training overhead than the STL framework. Since the STL
only support the one-to-one mapping, the transmitting and
reflecting channels need to be independently estimated by
different STL models. Moreover, the multi-task supervision
effectively increases the sample space in the network training,
which can attain the implicit data augmentation [32].

Furthermore, since the sub-wavelength units of the meta-
surface are arranged closely in hardware implementation,
the channels at the neighboring elements of the STAR-RIS
are highly correlated. However, the spatial non-stationarity
caused by VRs will disrupt the conventional spatial correla-
tions of the cascaded channel matrix in hybrid-field STAR-
RIS systems, which motivates us to design a more effi-
cient channel extrapolation model to reduce the pilot over-
head. In the dataset construction of the proposed channel
extrapolation model, we first select 𝑃 STAR-RIS elements
as a subset P of the whole STAR-RIS elements, satisfying
P = {1, Γ + 1, · · · , (𝑃 − 1) × Γ + 1} with the sampling interval
Γ = 2𝑈 (0 ≤ 𝑈 ≤ log2 𝑁). Let H𝑃

𝑘
∈ C𝑀×𝑃 denotes

the cascaded channel matrix of the subset P for the UE𝑘 .
Then, we serially turn on each element in the subset P, i.e.,
θ𝑘𝑝 = [0, · · · , 𝜃𝑘𝑛=𝑝 = 𝛽𝑘𝑛, · · · , 0]𝑇 ∈ C𝑃×1 in the 𝑝-th pilot slot
(1 ≤ 𝑝 ≤ 𝑃), to obtain the received signal Y𝑃 ∈ C𝑀×𝑃 at the
AP. Lastly, a channel extrapolation network is constructed to
realize the mapping from Y𝑃 to the complete channel matrix
H𝑘 ∈ C𝑀×𝑁 . By utilizing the cascaded channel correlations
in both user and spatial domain, an MTL-based joint channel
estimation framework can be developed, which only requires
𝑁/Γ pilots to realize the precise cascaded channel reconstruc-
tion of 𝐾 users in hybrid-field STAR-RIS systems.

Remark 3: In conventional reflection-only RIS systems,
the LS estimator with 𝑃 pilots can directly obtain the partial
channel matrix Ĥ𝑃

𝑘
∈ C𝑀×𝑃 of the cascaded channel H𝑘 ,

which is used as the input tensor the channel extrapolation
network. However, in multi-user STAR-RIS systems, 𝐾𝑃

pilots are required to obtain Ĥ𝑃
𝑘

according to (13). To reduce
the required pilot overhead in the channel pre-estimation, we
resort to the typical ON/OFF protocol by serially operating
the single STAR-RIS element [8], which can obtain the partial
mixture sampling Y𝑃 ∈ C𝑀×𝑃 of 𝐾 cascaded channels with
𝑃 pilots. Without loss of generality, the uplink pilot signal
𝑠𝑘,𝑞 is assumed to be 𝑠𝑘,𝑞 = 1 for 𝑞 = 1, 2, . . . , 𝑄 within
the same UG, while the mutual orthogonal time resources are
assigned to transmit pilot sequences among different UGs.
Hence, the 𝑝-th column of Y𝑃 can be expressed as Y𝑃

𝑝 =∑𝐾
𝑘=1 𝛽

𝑘H𝑃
𝑘,𝑝

(1 + 𝜂𝑘, 𝑝) + N𝑒𝑝 , in which N𝑒𝑝 ∈ C𝑀×1 denotes
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Fig. 4. Multi-task learning framework for joint multi-user channel estimation.

the measurement error caused by the noise and hardware
imperfections. Hence, the channel extrapolation difficulty in
STAR-RIS systems is larger than the reflection-only RIS
systems. Note that the drawbacks of the ON/OFF protocol
have been discussed in the conventional reflection-only RIS
channel estimation. Since only an RIS element is activated
at the single pilot slot, the signal strength of received pilots
will be reduced. Nevertheless, for the MTL-based STAR-RIS
channel estimation framework, the advantage of this operating
protocol is that it can provide the efficient training samples
with fewer pilots, i.e., 𝑄 = 𝑃 in the proposed scheme instead
of 𝑄 = 𝐾𝑃.

B. Multi-task Learning-based Joint Channel Estimation

As illustrated in Fig. 4, we present the proposed MTL
framework for joint cascaded channel estimation, in which
the cascaded estimation estimation of each UE is regarded
as a subtask, i.e., 𝐾 subtask heads are constructed in the
MTL. The proposed MTL architecture is a low-level shared
MTL framework, which can be divided into three parts, i.e.,
shared features extraction in the bottom of network, features
interaction in the intermediate layers, and multi-task heads in
the network output layers. In the classic shared-bottom MTL
model with 𝐾 subtasks [32], the individual real-value output
O𝑘 ∈ R𝑀×𝑁×2 for the 𝑘-th subtask (1 ≤ 𝑘 ≤ 𝐾) can be
represented as

O𝑘 = 𝜔
𝑘𝑠(Y𝑃), (14)

where functions 𝑠(·) and 𝜔𝑘 (·) denote the shared-bottom
module and the 𝑘-th task-specific head, respectively.

For the classic MTL model in (14), each subtask head 𝜔𝑘 (·)
affects other subtasks by only updating common weight pa-
rameters in the shared layers 𝑠(·), which overlooks the subtask
relationships and task-specific functionalities built upon shared
representations. To model the task relationships and learn task-
specific functionalities built upon shared representations, we
introduce the attention gating 𝑔𝑘 (·) into the proposed MTL
framework, which is given by

O𝑘 = 𝜔
𝑘
(
𝑔𝑘

(
𝑠(Y𝑃)

)
⊙ 𝜛

(
𝑠(Y𝑃)

))
, (15)

where function 𝜛(·) denotes the feature interaction module.
Both 𝜛(·) and 𝑔𝑘 (·) are designed to capture the specific shared
task information for different perspectives, in which 𝑔𝑘 (·)
of different subtask 𝑘 is generated by utilizing the attention
mechanism. In the section IV, we will elaborate the detailed
architecture of the attention mechanism.
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C. Task Uncertainty-Based Joint Adaptive Optimization

In the multi-task optimization process, the loss balancing
strategy of different subtasks need to be carefully designed
to alleviate subtask competition and guarantee the stable
convergence of each subtask. For the channel estimation in
STAR-RIS system, the ES ratio 𝛽 𝑓𝑛 (∀ 𝑓 ∈ {𝑡, 𝑟}) will affect the
estimation performance of the transmitting and reflecting cas-
caded channel. The corresponding channel estimation accuracy
can be improved with larger 𝛽 𝑓𝑛 and vice versa. In the proposed
joint optimization strategy, we utilize the prior knowledge of
ES ratio 𝛽

𝑓
𝑛 to balance the network training, in which the

same ES ratio 𝛽
𝑓
𝑛 = 𝛽 𝑓 (1 ≤ 𝑛 ≤ 𝑁) is set for all STAR-

RIS elements in the channel estimation stage. Furthermore,
we leverage the task uncertainty to obtain a learnable scalar
𝜎𝑘 for subtask 𝑘 [33]. Let 𝑓 (·) denote the proposed MTL
model. The DL-based channel estimation can be regarded as
the regression task, in which the Gaussian likelihood of the
MTL can be given by

𝑝

(
H | 𝑓 (Y𝑃)

)
= N

(
𝑓 (Y𝑃), 𝜎2

)
, (16)

where H = {H1, · · · ,H𝐾 }, 𝑝
(
H | 𝑓 (Y𝑃)

)
denotes the

marginal probability, 𝜎 = {𝜎1, · · · , 𝜎𝐾 } is the set of ob-
servation noise scalar for each subtask, and N(·) represents
the Gaussian distribution. Since the output of each subtask
is independent and identically distributed (i.i.d.) for the given
sufficient statistics, the multi-task likelihood in (16) satisfies

𝑝

(
H , | 𝑓 (Y𝑃)

)
= 𝑝

(
H1, | 𝑓 1 (Y𝑃)

)
· · · 𝑝

(
H𝐾 , | 𝑓 𝐾 (Y𝑃)

)
.

(17)

The log likelihood of 𝑝
(
H𝑘 , | 𝑓 𝑘 (Y𝑃)

)
satisfies [34]

log 𝑝
(
H𝑘 | 𝑓 𝑘 (Y𝑃)

)
∝ − 1

2𝜎2
𝑘



H𝑘 − 𝑓 𝑘 (Y𝑃)


2 − log𝜎𝑘 ,

(18)

where 𝑓 𝑘 (·) denotes the output of subtask 𝑘 in the proposed
MTL model, i.e., 𝑓 𝑘 (Y𝑃) = O𝑘 .

To maximize the Gaussian likelihood 𝑝
(
H , | 𝑓 (Y𝑃)

)
,

we minimize the opposite objective function of
log 𝑝

(
H , | 𝑓 (Y𝑃)

)
, which is given by

− log 𝑝
(
H , | 𝑓 (Y𝑃)

)
= − log

(
𝑝

(
H1 | 𝑓 1 (Y𝑃)

)
· · · 𝑝

(
H𝐾 | 𝑓 𝐾 (Y𝑃)

))
∝

𝐾∑︁
𝑖=𝑘

1
2𝜎2

𝑘



H𝑘 − 𝑓 𝑘 (Y𝑃)


2 + log𝜎𝑘 ,

where the loss function of each subtask can be set to ℓ2-norm
loss L𝑘 =



H𝑘 − 𝑓 𝑘 (Y𝑃)


2 [33].

Considering the unique characteristics of hybrid-field cas-
caded channel estimation in STAR-RIS systems, we replace ℓ2-
norm loss with ℓ1-norm loss to achieve the better convergence
performance, i.e., L𝑘 = |H𝑘 − 𝑓 𝑘 (Y𝑃) |, wherein three reasons
can be summarized for selecting ℓ1 norm as the subtask loss
function. Specifically, (1) ℓ2 loss is sensitive to outliers in the
spatial non-stationary channel matrix H𝑘 , e.g., the zero-value
blocks and hybrid-field components in Fig. 3(d). (2) ℓ2 loss
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Fig. 5. Network backbone of the proposed MTN architecture.

is unfriendly to the small error between H𝑘 and 𝑓 𝑘 (Y𝑃) as
the network training progresses, resulting in a smaller training
step and decreasing the convergence speed for the channel
estimation task with the requirement of high precision. (3)
The utilization of ℓ2 loss in regression tasks will cause the
losing of the details of target samples. The minimization of ℓ2
loss leads to the suppression of high frequency details in H𝑘 ,
e.g., the overlapping intersection of VRs, entailing blurred and
over-smoothed channel matrix. In fact, this limitations of ℓ2
loss have been widely discussed in computer vision filed [35],
as well as deep learning-based channel estimations models for
various communication scenarios [36], [37], while ℓ1 loss can
provide preferable convergence performance according to the
empirical observation. Hence, by aggregating the ES ratio 𝛽 𝑓 ,
the joint loss function of the proposed MTL framework can
be expressed as

Lj (𝜎𝑘) ≈
𝐾∑︁
𝑖=𝑘

1
2𝜎2

𝑘

(2 − 𝛽𝑘)L𝑘 + log𝜎𝑘 , (19)

where 𝛽𝑘 is set to 𝛽𝑘 = 𝛽𝑡 if the subtask 𝑘 is the transmitting
channel estimation; otherwise 𝛽𝑘 is set to 𝛽𝑘 = 𝛽𝑟 . Learnable
parameter 𝜎𝑘 represents the homoscedastic task uncertainty
of each subtask, in which the weight of L𝑘 decreases as 𝜎𝑘
increases. The last term in (16), log𝜎𝑘 , is a regularization term
to penalize the too large 𝜎𝑘 .

IV. MIXED CONVOLUTION AND MLP-BASED MULTI-TASK
NETWORK ARCHITECTURE

The proposed MTL framework in Section III provides
the basic design guideline for the joint STAR-RIS channel
estimation, e.g., the input-to-output mapping relation and
the construction of the joint loss function. In this section,
we will elaborate the detailed network architecture, i.e., the
MTN backbone and basic network components, for the high-
dimensional cascaded channel reconstruction in hybrid-field
STAR-RIS systems.

A. Overall Network Backbone of the Proposed MTN

Fig. 5 shows the overall network backbone of the proposed
MTN architecture, whose design guidelines comply with the
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proposed MTL framework. In the pre-processing stage of the
MTN, we first use the complex-to-real operation to obtain the
real-value input tensor Ȳ𝑃 = {ℜ(Y𝑃),ℑ(Y𝑃)} ∈ R𝑀×𝑃×2

and the output tensor H̄𝑘 = {ℜ(H𝑘),ℑ(H𝑘)} ∈ R𝑀×𝑁×2.
Then, the bi-directional cubic interpolation method is used
to carry out the pre-upsampling operation, in which Ȳ𝑃 is
upscaled to the feature map Fu ∈ R𝑀×𝑁×2. In the bi-
directional cubic interpolation operation, we first exhibit the
coordination projection between the (𝑋,𝑌 )-th entry of the
upsampling channel feature Fu and the (𝑥, 𝑦)-th entry of the
low-dimensional Ȳ𝑃 . Suppose the upscaling factor is (𝑢1, 𝑢2)
in the horizontal and vertical direction of the feature map, i.e.,
(𝑢1, 𝑢2) = (𝑀/𝑀, 𝑁/𝑃) = (1, Γ) in the pre-upsampling, and
the coordination projection of the entry Fu (𝑋,𝑌 ) on Ȳ𝑃 is
(𝑥, 𝑦) = (𝑋/𝑢1, 𝑌/𝑢2). Then, the value of the entry Fu (𝑋,𝑌 )
is determined by the 𝑡 × 𝑡 nearest entries of Ȳ𝑃 , which can be
expressed as

Fu (𝑋,𝑌 ) =
𝑡
2 −1∑︁
𝑖=− 𝑡

2

𝑡
2 −1∑︁
𝑗=− 𝑡

2

Ȳ𝑃
𝑥+𝑖,𝑦+ 𝑗 · 𝜀

(
𝑖 + 𝑡

2

)
∗ 𝜀

(
𝑗 + 𝑡

2

)
(20)

where the nearest range is set to 𝑡 × 𝑡 = 4 × 4 in the
proposed MTN model. For the edge entries of Ȳ𝑃 , i.e.,
𝑥 < 𝑡

2 or 𝑦 < 𝑡
2 , we adopt the zero padding operation to

compute the corresponding entries in Fu. The basis function
𝜀(·) denotes the contributing weight of the entry H̄𝑃 (𝑥, 𝑦) for
the entry Fu (𝑋,𝑌 ), which is given by

𝜀(𝑥) =


(𝑎 + 2) |𝑥 |3 − (𝑎 + 3) |𝑥 |2 + 1, for |𝑥 | ≤ 1,
𝑎 |𝑥 |3 − 5𝑎 |𝑥 |2 + 8𝑎 |𝑥 | − 4𝑎, for 1 < |𝑥 | < 2,
0, otherwise,

(21)

where the solvable parameter 𝑎 is set to 𝑎 = 0.5 [38].

Although the cubic interpolation in the pre-upsampling
operation can smoothly fit a given data point without losing
the details of the feature maps, the interpolation error will
be inevitably introduced for upsampling features. Hence, the
encoder-decoder architecture is constructed to learn the low-
rank latent representation of the upsampling features. This
architecture implicitly characterize the sparsity of the hybrid-
field cascaded channel and reduce the required network com-
plexity compared with the flatten network architecture [15].
As shown in Fig. 5(a), the share encoder with 𝐵 encoder
blocks is designed to progressively compress Fu ∈ R𝑀×𝑁×2

into the latent representation Fe ∈ R𝑀/2𝐵−1×𝑁/2𝐵−1×2𝐵−1𝐶 (𝐵 ≤
⌊𝑙𝑜𝑔2𝑀⌋), in which 𝐶 represents the number of feature
channels. In the encoder block, the convolutional operations
with stride (𝜄𝑏𝑥 , 𝜄𝑏𝑦) = (2, 2) are used to reduce the size of the
feature map, i.e., the feature Fe

𝑏
∈ R𝑀/2𝑏−1×𝑁/2𝑏−1×2𝑏−1𝐶 is

converted into Fe
𝑏+1 ∈ R𝑀/2𝑏×𝑁/2𝑏×2𝑏𝐶 (1 ≤ 𝑏 ≤ 𝐵 − 1). Note

that the convolutional stride in the first encoder block is set
to (𝜄1𝑥 , 𝜄1𝑦) = (1, 1) so as to enrich the low-level features in the
MTN architecture.

Accordingly, 𝐾 subtask decoders with 𝐵 − 1 decoder
blocks are designed to recover the desired cascaded chan-
nels H̄𝑘 ∈ R𝑀×𝑁×2 from the feature representation set
F e = {Fe

1, · · · ,F
e
𝐵
} obtained by the encoder. In the 𝑏-

th decoder block, the cubic interpolation module with the
upscaling factor (𝑢𝑏1 , 𝑢

𝑏
2 ) = (2, 2) is used to carry out the

upsampling operations of the feature map Fd
𝑏
. Then, a convo-

lutional layer is used to reduce the number of feature channels
of Fd

𝑏
, i.e., Fd

𝑏
∈ R𝑀/2𝐵−𝑏×𝑁/2𝐵−𝑏×2𝐵−𝑏𝐶 is converted into

Fd
𝑏+1 ∈ R𝑀/2𝐵−𝑏−1×𝑁/2𝐵−𝑏−1×2𝐵−𝑏−1𝐶 . In the decoding stage,

the parameters of the first decoder block are shared among
𝑆 subtask decoders. This operation reduces the parameters
and computations of the MTN model, and imposes different
decoders to learn the common low-level representation.

Considering the effective information loss during the feature
compression in the encoder, we introduce the feature skip con-
nections between the shared encoder and multi-task decoders
to concatenate feature maps through the channel dimension.
Note that compared to the typical tensor summation operation-
based feature skip connections [13], [15], the designed feature
concatenation method in this work can preserve the original
data distributions of all feature maps and increase the network
capacity. Furthermore, we introduce the attention gating in
the skip connections to enhance the effective representation
obtained by encoder block, which is shown in Fig. 5(b).
For the feature map Fe

𝑏
obtained by the 𝑏-th encoder block

(2 ≤ 𝑏 ≤ 𝐵), we use the element-wise addition to compute
the fused feature F̄𝑏 = Fe

𝑏
+ Fd

𝑏−1 between the encoder block
𝑏 and the decoder block 𝑏 − 1. Then, we design the improved
channel attention mechanism to learn an adaptive weight 𝛼.
Specifically, we use the global average pooling module to
unbend F̄𝑏 through the spatial dimension so as to determine
the feature vector z = [𝑧1, · · · , 𝑧𝑐, · · · , 𝑧𝐶 ] ∈ R𝐶×1. Here, the
feature 𝑧𝑐 can be expressed as

𝑧𝑐 =
1

𝑀 × 𝑁

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

F̄𝑏,𝑐 (𝑚, 𝑛), (22)

where F̄𝑏,𝑐 ∈ R𝑀×𝑁 denotes the feature matrix for feature
channel 𝑐 of F̄𝑏. Next, a linear layer with weight W𝑧 ∈ R𝐶×𝐶

is used to obtain the feature vector z̄ ∈ R𝐶×1. We adopt
Tanh activation to constrain the range of specific attention
weight α ∈ R𝐶×1, i.e., α𝑐 = 𝑒z̄𝑐 −𝑒−z̄𝑐

𝑒z̄𝑐+𝑒z̄𝑐 , where α𝑐 and z̄𝑐
denote the 𝑐-th element of α and z̄, respectively. Further-
more, the feature F̄𝑏 is rescaled with α by the channel-
wise multiplication. Then, the residual connection is used to
obtain the feature F̂𝑏 by fusing the low-level feature and
the weighted feature, i.e., F̂𝑏 = F̄𝑏 ⊙ α + Fe

𝑏
. In this case,

the concatenated feature in the 𝑏-th skip connection can be
expressed as Fc

𝑏
= Concat{F̂𝑏,Fu

𝑏
} ∈ R𝑀/2𝑏×𝑁/2𝑏×(2𝑏+1𝐶 ) .

Lastly, the convolutional layer with 2𝑏𝐶 filters is used to
obtain the fused feature map Ff

𝑏
∈ R𝑀/2𝑏×𝑁/2𝑏×2𝑏𝐶 . For the

last layer of the decoder, we use the convolutional layer with
two filters to be in accord with the representation of channel
matrix with two channel, where the filter size (𝑆1, 𝑆2) is set
to (𝑆1, 𝑆2) = (1, 1).

In Fig. 5(c), we present the basic feature extraction module
in the encoder and decoder blocks, termed as ConvMLP, which
is motivated by the network architectures with global feature
modeling ability, e.g., Transformer [39] and sparse MLP
[40]. The ConvMLP module is divided into the convolutional
operations-based local feature extraction module and the MLP-
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Fig. 6. Convolution operations for channel feature extraction. (a) The standard
2D convolutional layer with 𝑂 filters; (b) The proposed dilated channel-wise
convolution module.

based long-range dependency feature modeling module, which
addresses to the local spatial channel correlation for ELAA
communications, and the specific spatial non-stationarity for
the hybrid-field STAR-RIS systems, respectively.

B. Channel-Wise Convolution-Based Local Feature Extraction

Since the wireless channels between densely packed STAR-
RIS elements have obvious local spatial correlations, the two-
dimensional convolutional neural network (CNN) is usually
utilized as the basic architecture to capture the spatial corre-
lations by utilizing local convolution operations. The standard
convolutional (SD Conv) operation with 𝐶 filters is defined as

(Wc ⊗ F)𝑚,𝑛 =
𝑆1∑︁
𝑠1=1

𝑆2∑︁
𝑠2=1

𝐶∑︁
𝑐=1

Wc
𝑠1 ,𝑠2 ,𝑐 · F𝑚+𝑠1 ,𝑛+𝑠2 ,𝑐, (23)

where F ∈ R𝑀×𝑁×𝐶 and Wc ∈ R𝑆1×𝑆2×𝐶 denote the input
feature map and the convolutional filter, respectively.

Fig. 6a visualizes the computing process of the SD Conv
layer in the CNN, in which the all channels of the feature map
need to participate the convolution operations, thus resulting
in the high computing requirements for real-time applications.
Moreover, the widely used small-size convolution kernel in
the classic CNN architecture, e.g., 3 × 3 kernel, has a limited
receptive field in the feature extraction. To improve the com-
puting efficiency and increase the effective receptive field, we
design a dilated channel-wise convolution (DC Conv) module
to replace the SD Conv. As illustrated in Fig. 6b, the DC
Conv module is divided into the dilated group convolution
(DR Conv) and point-wise convolution (PW Conv). In the DR
Conv, we design the channel group strategy and the dilated
convolutional kernel to extract the preliminary features. The
DR Conv operator ⊗dr can be expressed as

(Wr ⊗dr F)𝑚,𝑛 =
𝑆1∑︁
𝑠1=1

𝑆2∑︁
𝑠2=1

𝐶/𝑔∑︁
𝑐=1

Wr
𝑠1 ,𝑠2 ,𝑐 · F𝑚+𝑑𝑙1 ,𝑛+𝑑𝑙2 ,𝑐, (24)

where 𝑔 and 𝑑 denote the number of convolutional groups
and the dilated rate of convolutional kernel, respectively.
Compared with the SD Conv, the DR Conv can reduce the
computational cost by a factor 𝐶/𝑔 and the effective receptive
field is expanded to (𝑆1 + 𝑑) (𝑆2 + 𝑑).

Due to the non-overlapped feature channel group strategy in
the DR Conv operation, the information interaction between
channels of the feature map cannot be realized. Hence, we

design the PW Conv operator ⊗pw to aggregate the separable
feature channels obtained by the DR Conv, which is given by(

Wp ⊗pw F
)
𝑚,𝑛

=

𝐶∑︁
𝑐=1

Wp
𝑐 ⊙ F𝑚,𝑛,𝑐, (25)

where the spatial size of the filter Wp is set to (𝑆1, 𝑆2) = (1, 1).
In the DC Conv module, we further introduce the channel

attention mechanism to enhance local effective information
and suppress other useless components of the feature map,
whose network architecture is similar to the attention gating
in Fig. 6c. Consequently, the output of the DC Conv module
can be expressed as

DC (Wp,Wr,αr,F) = Wp ⊗pw (Wr ⊗dr F) + F ⊙ αr, (26)

where αr ∈ R𝐶×1 is an attention weight vector.
Complexity Comparison between SD Conv and DC Conv:

In the SD Conv, the space and computational complexity are
O(𝐶2𝑆1𝑆2) and O(𝑀𝑁𝐶2𝑆1𝑆2), respectively. The complexity
of the DC Conv is composed of the PW Conv and the DR
Conv, whose space and computational complexity can be
summarized as O(𝐶2 (𝑆1𝑆2/𝑔+1) and O(𝑀𝑁𝐶2 (𝑆1𝑆2/𝑔+1)),
respectively. Since parameter 𝑔 is set to 𝑔 ≫ 1, i.e., 𝑔 = 𝐶/8
in the proposed MTN, the DR Conv can realize more efficient
and lightweight network architecture than the SD Conv.

C. Axial MLP-Based Global Feature Modeling

In the hybrid-field STAR-RIS systems, the dynamic VRs
results in the spatial channel non-stationarity. Hence, the local
spatial correlation of the cascaded channel will be partly lost
and has uneven distribution, which restricts the feature extrac-
tion ability for the local convolutional operations. Although
we introduce the dilated convolution operation to increase the
receptive field of convolutional layers, the long-range and non-
local feature modeling ability is still limited for the DC Conv
module. To extract the non-local features of the hybrid-field
STAR-RIS channel, we first review a typical global model-
ing network, i.e., self-attention mechanism-based Transformer
model [39]. In the Transformer model, the feature map F is
flatten along the spatial dimension, termed as tokenization,
i.e., F ∈ R𝑀×𝑁×𝐶 → Ft ∈ R𝐿×𝐶 , (𝐿 = 𝑀 × 𝑁). Then,
different linear transformations are applied to obtain the Key
matrix K ∈ R𝐿×𝐷 , Query matrix Q ∈ R𝐿×𝐷 and Value matrix
V ∈ R𝐿×𝐷 , which is given by

K = FtWk, (27a)
Q = FtWq, (27b)
V = FtWv, (27c)

where W𝑑 ∈ R𝐶×𝐷 (∀𝑑 ∈ {k, q, v}) are the weights of the
linear layers. According to the scaled dot-product attention,
the output A ∈ R𝐿×𝐷 of the self-attention module is given by

A = Atten(K,Q,V) = Softmax
(
QK𝑇

√
𝐷

)
· V = E · V, (28)

where E is termed as the attention matrix, the hyper-parameter
𝐷 is generally set to 𝐷 = 𝐶, and Softmax(·) denotes the
Softmax activation function, i.e., Softmax(v) = 𝑒𝑣𝑖∑𝐿

𝑖=1 𝑒
𝑣𝑖

for the
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Fig. 7. Information flow in the axial MLP.

vector v ∈ R𝐿×1. According to (28), an intrinsic bottleneck
to the self-attention mechanism is the quadratic complexity
O

(
𝐿2) with the token sequence length 𝐿 in both computation

and memory. This problem is particularly obvious for the
Transformer empowered ELAA systems, where the channel
with the dimension of 𝑀 × 𝑁 after tokenization will produce
a very large 𝐿.

To realize the global modeling of the non-stationary channel
with efficient space and computation complexity, we resort to
an axial global modeling framework [40], [41], and design a
axial MLP architecture with weaker inductive bias. As illus-
trated in Fig. 7, the axial MLP is divided into three branches to
extract the feature extraction along different spatial directions,
i.e., horizontal mixing path, vertical mixing path, and identity
mapping path. In the horizontal mixing path, the feature tensor
F ∈ R𝑀×𝑁×𝐶 is reshaped into the feature Fh ∈ R𝑀𝐶×𝑁 , and a
linear layer with weights Wh ∈ R𝑀𝐶×𝑁 is applied to each of
the 𝑀𝐶 rows of Fh. The similar operation is applied to obtain
the feature Fv ∈ R𝑁𝐶×𝑀 in the vertical mixing path, and the
linear layer is characterized by weights Wv ∈ R𝑁𝐶×𝑀 . Finally,
the outputs of the three paths are fused together to produce the
output tensor Aa ∈ R𝑀×𝑁×𝐶 . Specifically, in the axial MLP,
we reconstruct the linear transformation module in (27) of the
Transformer, which is given by

Ka=FhWh, (29a)
Qa=FvWv, (29b)

Va=Fh. (29c)

Next, we drop the scaled dot-product attention operation in
(28), while adopt the tensor concatenation operation to realize
the multi-branch feature fusion as follows.

Aa = Concat(K,Q,V) · Wa, (30)

where Wa ∈ R3𝐶×𝐶 is a linear layer. In this axial global
modeling strategy, we carry out the MLP operations along
the STAR-RIS elements domain (horizontal path) and AP
antennas domain (vertical path) instead of the entire spatial
cascaded channel matrix. The global spatial dependency of
the feature map can be obtained by interacting twice with
horizontal and vertical tokens [40], [41]. After the spatial
modeling by constructing the axial MLP, we add the channel-
mixing module to realize the information interaction between
channel dimensions of the feature map, which is implemented
by two linear layers with non-linear activation function. The
feature tensor Aa is reshaped into the feature Ac ∈ R𝑀𝑁×𝐶 at
first. Then, two linear layers are used to obtain the feature Af,

(c) Transformer (d) Axial MLP

M

N

M

N

M

N

M

(a) 3×3 SD Conv (b) 3×3 DC Conv

N

Fig. 8. Receptive field (connectivity pattern) of different network modules.
The dark-purple grid denotes the operating target token, while the light-purple
grids denote the connecting tokens in the whole feature map.

which can be expressed as

Af = LR(AcW1) · W2 + Ac, (31)

where the first linear layer W1 ∈ R𝐶×𝜐𝐶 project the feature
Ac into the high-dimension representation space, and 𝜐 ≥ 1
is a hyper-parameter for ascending dimension of Ac. The
second linear layer W2 ∈ R𝜐𝐶×𝐶 is used to recover the
original channel dimension again. Between two linear layers,
we use the LeakeyReLU activation function to provide the
non-linearity of feature transformation, which is given by

LR(𝑥) =
{
𝑥, 𝑥 ≥ 0,
𝑥
𝑎
, 𝑥 < 0, (32)

where 𝑎 = (1, +∞) is known as the Leakage value. Com-
pared with the widely used ReLU activation in other channel
estimation works [15], the LeakeyReLU can activate the
negative components of the channel matrix, which enhances
the representation and generalization abilities of ConvMLP.

Complexity Comparison between Transformer and Axial
MLP: In the global spatial modeling of the feature map, the
computation complexity of Transformer is O((𝑀𝑁)2𝐶) [39].
The axial MLP adopts the multi-branch architecture to reduce
the required computations for the entire 𝑀 × 𝑁 spatial mod-
eling, whose complexity is summarized as O(𝑀𝑁𝐶 (𝑀 + 𝑁 +
3𝐶)). While the computational complexity of the Transformer
grows with (𝑀𝑁)2, the computational complexity of the axial
MLP grows with 𝑀𝑁

√
𝑀𝑁 , which is more computational

friendly for ELAA communications with larger 𝑀 and 𝑁 .
Remark 4: In Fig. 8, we show the spatial receptive field of

the cascaded channel feature for different network modules. As
illustrated in Fig. 8(a) and Fig. 8(b), the convolutional modules
focus on the locality bias of the feature map. By utilizing the
dilated convolutional kernel, the proposed DC Conv can obtain
larger receptive field without extra computations compared
with the SD Conv. Fig. 8(c) shows that the Transformer
architecture adopt the directly global spatial modeling strategy
for the input feature map. For the axial MLP in Fig. 8(d), the
operating target token only interacts with the light-purple to-
kens along the AP antennas and STAR-RIS elements direction,
which significantly reduces the network complexity than the
Transformer. In particular, the global receptive field can be
obtained by executing twice axial MLP operations.

V. NUMERICAL RESULTS

In this section, we first introduce the simulation setups for
the STAR-RIS communication scenarios, hyper-parameters of
DL model, and the existing benchmarks. Then, the channel
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TABLE I
HYPER-PARAMETERS FOR THE PROPOSED MTN

Hyper-Parameters Value
Number of encoder block 𝐵 3

Number of filters 𝐶 of the first Conv layer 48
Kernel size of the SD Conv layer 𝑆1 × 𝑆2 3 × 3

Dilated rate of kernel size 𝑑 2
Ascending dimension factor 𝜐 2

Leakey value 𝑎 5
Number of training epochs 50

Number of training batchsize 16
Initial learning rate 1 × 10−1

Final learning rate 1 × 10−5

Weight decay 5 × 10−4

estimation performance of the proposed MTN is evaluated
under various parameter setups. We design the ablation studies
to present the effects of each module in the proposed MTN.

A. Simulation Setups
In the simulation, we set 𝑀 = 4× 8, 𝑁𝑠 = 8× 64, 𝜈 = 2× 2,

𝑁 = 4 × 32, and 𝑓𝑐 = 28 GHz. The antenna spacing Δ𝑚 at
the AP and Δ𝑛 at the STAR-RIS are set to Δ𝑚 = 2𝜆 and
Δ𝑛 = 𝜆/2 [24], [27], respectively. In the channel realization,
the number of total clusters and scatterers in cluster 𝑐 follow
𝐶s ∼ max{𝑃(1.8), 1} and 𝑆𝑐 ∼ U[1, 30], respectively. The
VR lengths at the STAR-RIS follow (®𝑙1

𝑘
, ®𝑙2
𝑘
) = (®𝑙R,1𝑐 ∼

LN(0.8, 0.2), ®𝑙R,2𝑐 ∼ LN(3, 0.2)), while the VR lengths at
the AP follow (®𝑙A,1𝑐 ∼ LN(0.8, 0.2), ®𝑙A,2𝑐 ∼ LN(1.5, 0.2)) for
cluster 𝑐. In the MTN-based joint channel estimation scheme,
the required overhead is 𝑄 = 𝑃 = 𝑁/Γ. Unless otherwise
specified, we set Γ = 4, 𝛽𝑡 = 𝛽𝑟 = 0.5, 𝐾 = 2 and 𝜌u

𝑘
=

𝜌a = 𝜌 = 0.1. In the network training, the MTN is optimized
with the stochastic gradient descent (SGD) method, in which
the cosine learning rate decay schedule is arranged. Table I
summarizes the main hyper-parameters for the proposed MTN
model. We adopt normalized mean squared error (NMSE) as
the performance evaluation metric of the channel estimation,
i.e., NMSEH𝑘

= E
{
| |Ĥ𝑘 − H𝑘 | |

2
𝐹/| |H𝑘 | |2𝐹

}
. In this work, we

compare the proposed MTN model with the following channel
estimation benchmarks.

• LS-based TS/ES protocol [23]: A typical LS estimator
is compared, in which the phase shift of the STAR-RIS are set
to the DFT matrix in the pilot transmission stage. Due to the
full-rank condition in matrix inversion and the orthogonal pilot
transmission strategy, the required minimum pilot overhead is
𝑄 = 𝐾𝑁 for 𝐾 users.

• CS-based TS protocol [18]: A polar domain sparsity-
based channel estimation scheme is extended to the hybrid-
field channel estimation, in which the orthogonal matching
pursuit algorithm is utilized to recover H𝑘 from the observed
signal. The required minimum pilot overhead is 𝑄 = 𝐾𝑇 , in
which the observed pilot length 𝑇 is set to 𝑇 = 𝑁/2.
• MDSR-based ES protocol [13]: A multi-scale deep

network (MDSR)-based channel extrapolation framework in
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RIS systems is extended to the STAR-RIS channel estimation,
which adopts the convolution-based residual network archi-
tecture. For the DL estimators in the ES protocol, multi-user
cascaded channels estimation in the same UG can be realized
by utilizing 𝑄 = 𝑃 pilot transmission slots.
• DRSN-based ES protocol [37]: A deep residual shrink-

age network (DRSN)-based channel estimation model is ex-
tended to STAR-RIS systems, which uses the residual shrink-
age block as the basic feature extraction module. The required
pilot overhead of the DRSN is 𝑄 = 𝑃.

Moreover, we also construct a single-task network (STN)
model based on the MTN backbone to show the generalization
of the proposed network architecture for the STL framework,
where the multiple subtask heads in MTN is modified to a
single-task head. In this case, 𝐾 STN models are required
for 𝐾 cascaded channel estimation tasks. The required pilot
overhead of STN is 𝑄 = 2𝑃 for the TS protocol, while the
pilot overhead is 𝑄 = 𝑃 for the ES protocol.

B. Performance Comparison for Different Estimation Schemes

In Fig. 9, we provide the NMSE performance for different
channel estimation schemes. As a classic linear estimator,
the required pilot overhead of LS estimator need to satisfy
𝑄 ≥ 𝐾𝑁 , and the channel estimation performance is worse
under lower signal-to-noise-ratio (SNR) condition. Since the
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TABLE II
TRAINING OVERHEAD FOR DIFFERENT DL MODELS

FLOPs (G) Parameters (M) Pilots
TS-STN 1.270 × 𝐾 1.180 × 𝐾 𝑃 × 2
ES-STN 1.270 × 𝐾 1.180 × 𝐾 𝑃

ES-DRSN 2.756 0.821 𝑃

ES-MDSR 3.729 2.666 𝑃

ES-MTN 1.808 1.357 𝑃

effective sparse representation of the non-stationary hybrid-
field cascaded channel is hard to characterize, the estimation
accuracy of the CS estimator is non-ideal, in which a ap-
propriate pilot overhead 𝑄 = 𝐾𝑁/2 is adopted to provide a
acceptable channel estimation accuracy. Thanks to the mighty
non-linear mapping ability of the DL model, the DL estimators
can obtain better channel estimation accuracy than traditional
estimators. For deep learning estimators, i.e., DRSN, MDSR
and the proposed MTN model, the pilot overhead is consis-
tently set to 𝑄 = 𝑃 = 𝐾𝑁/4 to provide a fair comparison
among deep learning estimators. Compared with the other DL
estimators, the proposed MTN can achieve superior NMSE
performance with less training overheads. In the same ES
protocol and the network backbone, the MTN architecture
can reach similar channel estimation accuracy with the STN
model, which shows the good balancing in the multi-task
optimization. Since the TS protocol avoids the power leakage
effect in the ES protocol, the STN in the TS protocol outper-
forms other estimators. However, in the TS protocol, since the
transmitting and reflecting signal transmission of STAR-RIS
are realized at different slots, the required pilot overhead of
the STN in the TS protocol is twice of that in the ES protocol.

In Fig. 10, we compare the achievable sum-rate of differ-
ent channel estimation schemes under the ES protocol. Let
v𝑘 ∈ C𝑀×1 be the normalized precoding vector at the AP for
the UE𝑘 . The signal-to-interference-plus-distortion-noise-ratio
(SIDNR) for the UE𝑘 can be expressed as

𝛾𝑘 =

��v𝑇
𝑘
H𝑘θ

𝑘
��2

U
��v𝑇
𝑘
H𝑘θ𝑘

��2 + 𝐾∑
𝑖=1,𝑖≠𝑘

(1 + U)
��v𝑇
𝑖
H𝑘θ𝑘

��2+𝜎2
. (33)

where U = (𝜌a)2 + (𝜌u
𝑘
)2. Accordingly, the achievable sum-

rate is given by R =
∑𝐾
𝑘=1 log2 (1 + 𝛾𝑘). In this work, the

penalty-based alternative optimization framework in [29] is
used to jointly optimize v𝑘 and θ𝑘 according to the estimated
cascaded channel Ĥ𝑘 . Compared with traditional LS estimator
and the other DL estimators, the proposed MTN with less
pilot overhead can realize higher achievable sum-rate due to
more accurate cascaded channel estimation. With the increase
of available pilot overhead 𝑄, the achievable sum-rate of the
MTN progressively approaches the ideal sum-rate which is
optimized by utilizing the perfect channel H𝑘 .

Table II summarizes the required training overhead for DL-
based channel estimation schemes. In the STN estimator, the
cascaded channel of each user is independently estimated.
Hence, 𝐾 independent networks need to be trained and saved,
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which results in more floating point of operations (FLOPs)
and parameters than the proposed MTN. Compared with the
fully convolution architecture-based DRSN and MDSR model,
the proposed MTN introduces the axial MLP architecture to
capture the non-local features of the non-stationary cascaded
channel, which increases network parameters while improving
channel estimation accuracy. However, the advantage of the
MLP architecture is only composed of direct matrix multi-
plication routines. Consequently, the FLOPs of the proposed
MTN is less than the DRSN and the MDSR.

C. Generalization Performance for the Proposed MTN

In Fig. 11, the NMSE performance under different pilot
overhead 𝑄 is shown, where we adjust the number of UBs 𝑈
in the proposed MTN to match different 𝑄. With the increase
of 𝑄, the input tensor Y𝑝 contains more unknown entries of the
cascaded channel matrix, which reduces the required upscaling
factor Γ for the MTN model. Hence, the channel estimation
accuracy of the proposed MTN is further improved. Note that
when Γ is set to Γ = 1, i.e., 𝑄 = 𝑁 , the multi-task channel
extrapolation becomes a cascaded channel separation task from
the mixture transmitting and reflecting channels with noise.

In Fig. 12, we provide the transmitting (T) and reflecting
(R) channel estimation performance of the proposed MTN
under different ES ratios 𝛽 𝑓 (∀ 𝑓 ∈ {𝑡, 𝑟}). When larger 𝛽 𝑓 is
allocated to the transmitting or reflecting modes, the received
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pilot signal will involve more transmitting or reflecting signal
components. Accordingly, the cascaded channel estimation
performance of UE 𝑓 is also improved. However, it is worth
noting that the equal ES ratio, i.e. (𝛽𝑟 )2 = (𝛽𝑡 )2 = 0.5, can
ensure the high-quality channel estimation performance for
both transmission and reflection. Note that in the beamforming
stage of the STAR-RIS, the ES ratios 𝛽 𝑓 will be optimized.

In Fig. 13, we present the NMSE performance of the
proposed MTN under different number of UE 𝑓 𝐾 in the same
UG. As the increase of 𝐾 , more cascaded channels need to
be estimated simultaneously. Since the learning burden of
the MTN is further increased, the overall channel estimation
accuracy will be degraded. Due to the definitive capability
of deep neural networks, the certain network capacity of
the MTN is hard to perfectly match the increasing channel
reconstruction tasks. Note that the reduced pilot overhead of
the MTN is more pronounced than the STN estimator as the
increase of 𝐾 . When the total number of UEs 𝐾 = 𝐾 𝑡 + 𝐾𝑟
is the same, the NMSE of channel estimation has slight
differences for different 𝐾 𝑡 and 𝐾𝑟 in a UG, such as the case of
(𝐾 𝑡 = 1, 𝐾𝑟 = 2) and (𝐾 𝑡 = 2, 𝐾𝑟 = 1) in Fig. 13. The reason
for this phenomenon is that the channel differences among the
UEs at different geospatial locations change the correlations
of different subtasks. However, the subtask correlations in the
MTN will affect the overall channel estimation performance.

In Fig. 14, we provide the NMSE performance of the
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Fig. 15. NMSE performance for different variants of MTN.
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Fig. 16. NMSE performance for different optimization strategies.

proposed MTN under different levels of HWIs 𝜌. To present
the network generalization, the MTN model is trained with the
fixed HWIs 𝜌 = 0.1, while the trained MTN model is verified
under different levels of HWIs in the test stage. By learning
the latent representation of massive communication data, a
robust nonlinear mapping between received pilots and desired
cascaded channels is constructed for deep learning estimators.
Consequently, the proposed MTN model has the robustness for
the disturbances imposed on the input data, e.g., for the case
of the varying HWIs, and hence shows satisfactory channel
estimation performance even for the large HWIs 𝜌 = 0.2.

D. Ablation Studies for the Proposed MTN

In Fig. 15, we present the NMSE performance of three
variants of the proposed MTN by designing the ablation
studies, which verifies the positive effects of each module for
hybrid-field cascaded channel estimation in STAR-RIS sys-
tems. Compared with the DR Conv and the attention module
in the MTN, the introduction of the axial MLP module can
obtain more obvious performance improvements for channel
estimation. Note that the similar insight has been presented in
[22] for the MLP module. However, in the proposed MTN,
we exploit the axial MLP architecture to significantly reduce
the redundant parameters than the MLP in [22].

Fig. 16 compares the channel estimation performance of the
proposed MTN under different optimization strategies, i.e., the
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alternative optimization, the power weighted optimization and
the proposed joint optimization. In the alternative optimization,
𝐾 subtask loss functions are independently optimized, while
the loss function is aggregated with the fixed ES ratio 𝛽 𝑓 in the
power weighted optimization. The proposed joint optimization
strategy not only considers the ES prior information but also
introduces a adaptive scalar 𝛿𝑠 for subtask 𝑠, which can
balance the multi-task training process of the MTN. Conse-
quently, the proposed joint optimization strategy outperforms
other multi-task optimization strategies.

VI. CONCLUSIONS

By exploiting the ability to simultaneously tune transmis-
sion and reflection coefficients of the metasurface, the STAR-
RISs provide a promising paradigm to realize the full-space
SREs. In this work, we proposed an MTL-based joint cascaded
channel estimation framework by utilizing the channel correla-
tions between different users and between different STAR-RIS
elements. Furthermore, based on the proposed MTL frame-
work, an efficient MTN architecture was developed to realize
the precise high-dimensional cascaded channel reconstruction.
In the proposed MTN architecture, we exploited the ConvMLP
module to capture the local spatial features and the long-range
dependency of the hybrid-field cascaded channel. Compared to
existing state-of-the-art benchmarks, the proposed MTN can
realize superior channel estimation accuracy with less training
overhead, whose pilot overhead is independent to the number
of users within a UG. In future works, we will explore the
enhanced MTN models with better scalability to deal with
massive user scenarios in STAR-RIS systems.
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