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Quan-Transformer Based Channel Feedback for RIS-Aided
Wireless Communication Systems

Wenwu Xie , Jian Zou , Jian Xiao, Min Li, and Xin Peng

Abstract— Reconfigurable intelligent surface (RIS) has become
one of the key technologies for future 6G communications due
to its characteristics of an intelligent and controllable wireless
environment. In the frequency division duplex mode, the user
equipment feeds back the downlink channel state information
(CSI) to the base station through the feedback link, to obtain
potential gains for the RIS-aided wireless communication system.
A large number of RIS reflection elements greatly increase
the feedback link cost of the system. In this letter, Quan-
Transformer, a sample network framework for CSI compression
and reconstruction, is proposed based on Transformer network.
The proposed framework can not only compress CSI effectively
but also recover CSI with high precision, which improves the
performance of the RIS-aided wireless communication system.
According to the experimental results, compared with the CsiNet
scheme, the achievable sum-rate and normalized mean squared
error of the proposed scheme are increased by 6.57% and 3.32%,
respectively.

Index Terms— Reconfigurable intelligent surface, channel feed-
back, transformer, deep learning, frequency division duplex.

I. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS), as one
of the key 6G communications technologies, can break

through the uncontrollable characteristics of traditional wire-
less channels and realize the active control of the wire-
less transmission environment. Moreover, RIS can increase
the received signal intensity and improve the transmission
performance between communication devices by adjusting
the direction of signal propagation and superposition with
phase [1]. Wireless communication system based on RIS
technology mainly includes time division duplex (TDD) and
frequency division duplex (FDD) modes. At present, research
on wireless communication system based on RIS technology
is mainly based on TDD mode, but Wireless communication
system based on RIS technology under FDD mode is also of
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great significance. In FDD mode, due to the lack of channel
reciprocity, downlink channel state information (CSI) needs
additional links for feedback. Current research demonstrates
that the more RIS elements there are, the greater the per-
formance gain of the system will be [2] and [3]. A large
number of RIS reflection elements will inevitably lead to a
sharp increase in feedback information and greatly increase the
cost of the feedback link. Therefore, it has become research
challenge to effectively reduce the cost of CSI feedback on
the basis of ensuring the performance of RIS-aided wireless
communication system.

In [4], [5], [6], and [7], the channel feedback overhead
of massive multiple-input multiple-output (MIMO) system
is solved by introducing compressed sensing method. But
traditional compressed sensing uses sparse structure as a
prior information to recover the CSI matrix. In practical
channels, channel state information is not fully sparse, and
compressed sensing uses random projection to obtain low-
dimensional CSI, which cannot fully extract channel feature
information. In addition, the compressed sensing method of
iterative solution can not meet the real-time performance of
the communication system. In order to solve this problem
effectively, channel feedback scheme based on deep learning
is proposed, and its performance is far better than that of
compressed sensing scheme. For the feedback problem of
massive MIMO systems, reference [8] first proposed a channel
feedback framework based on deep learning, named CsiNet.
On this basis, the long-term Memory (LSTM) network named
CsiNet-LSTM was introduced in [9], considering the time
correlation of channels. In [10], the attention mechanism
is applied to the network to obtain the global receptive
field. In addition, literature [11], [12] proposed a multi-user
angle domain channel sparse transformation scheme to solve
RIS-aided wireless communication feedback problem based
on codebook method. However, to the best of our knowledge,
there has been little work on the employment of deep learning
tools to handle CSI feedback in RIS-aided wireless commu-
nication systems.

Recently, Transformer network architecture has been
applied in various fields of deep learning. This architecture
abandons the traditional convolutional neural network (CNN)
and recurrent neural network, and is completely composed
of attention mechanism [13]. In traditional CNN networks,
local feature information can only be proposed by changing
the convolution kernel, but global feature information cannot
be effectively extracted. Transformer network architecture can
not only extract local feature information, but also consider
global feature distribution.

In this letter, a simple CSI compression and reconstruction
network framework, called Quan-Transformer, is proposed to
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Fig. 1. The RIS-aided wireless communication system.

solve the CSI feedback problem caused by a large num-
ber of RIS reflection elements. The network is based on
the autoencoder network, in which the encoder and decoder
use Transformer network for CSI compression and recovery,
respectively. Experimental results show that the performance
of the Quan-Transformer is better than that of CsiNet, and the
system achievable sum-rate and normalized mean square error
(NMSE) are 6.57% and 3.32% higher than that of CsiNet,
respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the RIS-aided wire-
less communication system, where the BS is equipped with
M antennas of uniform line array (ULA). The RIS is equipped
with N reflection elements of uniform plane array (UPA).

The downlink signal received at the UE can be expressed
as

y =
�
g + hTΘH

�
s + z

=
�
g + θTdiag

�
hT
�
H
�
s + z, (1)

where g ∈ C1×M , hT ∈ C1×N , H ∈ CN×M denote
the BS-UE channel, the RIS-UE channel, and the BS-RIS
channel, respectively. s is the signal sent by the transmitter,
and z denotes additive white Gaussian noise. Θ ∈ CN×N

represents the adjustable phase shift diagonal matrix of RIS
as [14]

Θ = diag
�
θT
�

= diag
�
ωejθ1 , . . . , ωejθn , . . . , ωejθN

�
, (2)

where θn is the phase angle of the n-th RIS element, and
ω ∈ [0, 1], denotes the amplitude coefficient, and in this work,
ω is set to 1.

In this work, the cascaded (BS-RIS-UE) CSI is compressed
and reconstructed. The cascaded CSI at UE can be expressed
as

HDL = diag
�
hT
�
H. (3)

According to [15], the BS-RIS channel can be written as

H=
L1�
i=1

ρim (p1,i, q1,i)n
�
pAOD

i

�
, (4)

where ρi denotes the complex gain of the i-th path, L1 is
the number of paths, the steering vector n(pAOD

i ) denotes the
antenna array response of the i-th path. m(p1,i, q1,i) is the

steering vector of RIS between BS-RIS channel of the i-th
path, which can be written as

m (p1,i, q1,i) =
1√
N

[ej2πn1p1,i ]T ⊗ [ej2πn2q1,i ]T, (5)

where N1 and N2 represent the number of elements in
the horizontal and vertical directions of RIS, respectively,
n1 ∈ {1, 2, . . . , N1} and n2 ∈ {1, 2, . . . , N2}. p1,i =
d1
λ cosβBR,i sin αBR,i, q1,i = d1

λ sin βBR,i, where λ is the
wavelength, d1 denotes the distance between RIS elements,
αBR,i, βBR,i represents the azimuth and elevation in the arrival
angle between BS and RIS, respectively.

n
�
pAOD

i

�
=

1√
M

[ej2πmpAOD
i ]T, (6)

where pAOD
i = d2

λ sin αAOD
i , and αAOD

i represents the
angle of departure (AOD) the i-th path between BS and
RIS, d2 denotes the antenna spacing at the BS, and
m ∈ {1, 2, . . . , M}.

The RIS-UE channel can be written as

h =
L2�
i=1

ξim
H (p2,i, q2,i), (7)

where ξi denotes the complex gain of the i-th path.

mH (p2,i, q2,i) =
1√
N

[ej2πn1p2,i ]T ⊗ [ej2πn2q2,i ]T, (8)

where p2,i = d1
λ cosβRU,i sin αRU,i and q2,i = d1

λ sinβRU,i,
αBR,i, βBR,i represents the azimuth and elevation in the
departure angle between RIS and UE, respectively.

According to (3), (4) and (7), HDL can be written as

HDL =
L1�
i=1

L2�
j=1

ρiξi

×diag
�
mH (p2,i, q2,i)

�
m (αBR,i, βBR,i)nH

�
αAOD

i

�
.

(9)

By 2D discrete fourier transform (DFT) transformation,
CSI matrix will be sparse to facilitate effective compression
recovery, and the transformed matrix can be written as

HIN = FdHDLFa
H, (10)

where Fd ∈ C
N×N and Fa ∈ C

M×M are DFT matrices.

III. CHANNEL FEEDBACK PROCESS

AND NETWORK ARCHITECTURE

In this section, channel feedback process, channel feed-
back network architecture and quantitative methods will be
introduced. In the network architecture section, each network
layer will be introduced in detail, as well as the differences of
network design.

A. Channel Feedback Process

When the BS-RIS-UE cascaded CSI matrix HIN is esti-
mated at the UE, the CSI matrix is successively compressed
and quantized. The processed matrix Hbit can be expressed
as

Hbit = Q (fencode (HIN, θ1)) , (11)
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Fig. 2. Architecture of Quan-transformer.

where fencode(•) and Q(•) represent compression and quan-
tization, respectively, and θ1 donotes the parameters of the
compression module (Encoder).

After the compressed CSI matrix Hbit is received by BS,
matrix Hbit is successively dequantized, decompressed and
channel matrix recovered. The recovered CSI matrix Ĥ can
be expressed as

Ĥ = fdecode (P (Hbit, θ2)) , (12)

where fdecode(•) and P (•) represent the decompression and
dequantization, and θ2 donotes the parameters of the com-
pression module (Decoder), respectively.

Therefore, combining (11) and (12) with the mean square
error (MSE) function, the expression of optimized compres-
sion and recovery can be obtained:�

θ̂1, θ̂2

�
= argmin

θ1,θ2

||HIN − Ĥ||22. (13)

B. Network Architecture for Channel Feedback

The network architecture mainly includes encoder and
decoder. In the encoder and decoder, the backbone network
is based on the Transformer network, and is named as
Quan-Transformer network. The proposed network framework
diagram is shown in Fig. 2, where b represents the train-
ing parameter batch size. In the encoder, CSI matrix goes
through positional encoding, an attention module and linear
embedding module. The attention module mainly includes
multi-head attention and feed forward. Linear embedding is
mainly used to compress and recover the dimensions of the
features extracted by the Transformer network, so as to facili-
tate quantization and de quantization. It successively includes
linear layer, batchnorm layer and sigmoid activation function.
In the decoder, six attention modules are used, and the output
of each module is spliced with the output of linear embedding,
and finally passes through the convolution layer.

Fig. 3. Detailed structure in Quan-transformer.

1) Network Layer Details: Positional Encoding is intro-
duced in the network to encode each CSI so that CSI at differ-
ent positions could be distinguished during feature extraction.
In this work, sine and cosine functions of different frequencies
were used for position encoding [16]:

P (l, 2i) = sin
�

l

100002i/dmodel

�

P (l, 2i + 1) = cos
�

l

100002i/dmodel

�
, (14)

where i and l represent dimensions and positions, respectively,
Pl+k can be represented anywhere by a linear function of Pl,
dmodel donate the length of information encoding.

The commonly used self attention includes dot product
attention and additive attention [17]. This work uses scaled
dot-product attention

A(Q�, K�, V�) = softmax

	
Q�K�T
√

dk



V� (15)

where Q�, K�, V� all represent outputs after linear embeedding
raises dimension, and suitable dk will be used to solve the
gradient is too small.

According to [13], the feed-forward network (FFN) consists
of two linear layers and a ReLu activation function, FFN can
be expressed as

FFN (x) = max(0, xW1 + b1)W2 + b2, (16)

where x is input, W1 and W2 are linear layer weights, b1 and
b2 are linear layer intercepts.

2) Network Differences: Firstly, unlike traditional Trans-
former, we have abandoned positional encoding in the decoder.
Secondly, in the FFN layer, each linear layer uses different
hidden layers for feature extraction. Finally, in Decoder, the
output of six attention modules is spliced and then passed
through the convolution layer.

C. Quantization and Dequantization

Uniform quantization is essentially a process of rounding
data, in which each sample value is rounded to the nearest
value in a set of quantization of finite size [18]. It is assumed
that the compression value of CSI feedback matrix is between
[a, b], we have

f (x) = μ

�
x

μ

�
, (17)
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Fig. 4. Average MSE loss of different feedback schemes under different
epochs.

where x is input, μ = b−a
2k−1

. In this work, k = 2, and
represents 2-bit quantization.

IV. SIMULATION RESULTS

Four feedback simulation results of Quan-Transformer,
CsiNet, CLNet and CRNet are given from two perspectives of
network performance and system performance. In the experi-
ment, d1 = d2 = 0.5, M = 16, N = 64, L1 = 4 and L2 = 2.
The sample numbers of training set, test set and validation set
were 60000, 2000 and 1000, respectively. Epochs, batch size
and learning rate were set as 100, 16 and 0.001, respectively.

During the network training, we used NMSE and com-
pression rate (CR) to evaluate the compression recovery per-
formance of each network architecture. The NMSE can be
expressed as

NMSE = E

⎧⎪⎨
⎪⎩
���HIN − Ĥ

���2

2

�HIN�2
2

⎫⎪⎬
⎪⎭ , (18)

where HIN is the CSI matrix of network input, Ĥ is the CSI
recovery matrix output by the network.

According to [20], The CR can be written as

CR =
2NM

L
, (19)

where 2NM represents dimension of CSI matrix, 2 denotes
the real and imaginary part of the CSI matrix. In this work,
N , M represent the number of RIS elements and antennas,
respectively. L represents the dimension of the output of the
last linear layer of the encoder.

Fig. 4 shows the MSE loss curve of different feedback
schemes at different epochs. For the results in the figure, we set
CR = 4, N = 64, M = 16. From the figure, we can see
that when all schemes are trained to the optimal parameters,
the MSE loss of Quan-Transformer is less than that of other
schemes.

As Table I shown, the NMSE comparison results of
Quan-Transformer and other three different deep learning
schemes. Among them, the scheme corresponding to the bold
values indicates that the NMSE performance of this method

TABLE I

NMSE(dB) PERFORMANCE OF DIFFERENT FEEDBACK
SCHEMES UNDER DIFFERENT COMPRESSION RATES

Fig. 5. The NMSE performance of different feedback schemes under
different CR.

is the best compared with other methods under the same
CR. According to the data analysis in the table, when CR is
small, the NMSE performance of Quan-Transformer scheme
is much better than the other three schemes. The results show
that the NMSE performance of Quan-Transformer is improved
by 3.32% compared with that of CsiNet. Fig. 5 shows the
NMSE performance diagram of various feedback schemes
under different compression ratios when N = 64 and M = 16.
When CR = 4 and M = 16, the NMSE performance curves
under different feedback schemes with the change of the
number of reflection elements are described in Fig. 6. In Fig. 7,
when CR = 4 and N = 64, NMSE performance curves under
different feedback schemes change with the number of BS
antennas.

In order to further determine the effectiveness and reliability
of the feedback scheme, we select achievable sum-rate (ASR)
and to evaluate the feedback performance of the complete
communication system. The system of ASR can be written as

R = log2

�
1 +

p|(g + hTΘH)x̂|2
σ2

�
, (20)

where, x̂ and p are the precoding matrix and transmitted
power at BS, respectively, σ is noise power.

Fig. 8 describes the variation curve of system ASR of two
better feedback schemes (Quan-Transformer, CsiNet) under
different SNR. The results show that with the increase of SNR,
the system ASR of the two schemes also increase, and are far
better than those without channel feedback. At the same CR,
the system achievable sum-rate of Quan-Transformer scheme
is much better than that of CsiNet. While SNR = 11dB, the
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Fig. 6. The NMSE performance of different feedback schemes under
different N .

Fig. 7. The NMSE performance of different feedback schemes under
different M .

Fig. 8. The achievable sum-rate of CsiNet and Quan-Transformer schemes
under different SNR.

system ASR of Quan-Transformer scheme is 6.57% higher
than that of CsiNet scheme in different CR.

V. CONCLUSION

In this letter, a simple network framework for CSI compres-
sion and reconstruction, named Quan-Transformer, is proposed
and applied for the first time in the channel feedback problem

of RIS-aided wireless communication system. This proposed
network is based on the autoencoder network, and the Trans-
former network is used for CSI compression and recovery
in the encoder and decoder, respectively. On this basis, the
quantization module is further introduced to improve the CSI
reconstruction accuracy again. Experimental results show that
Quan-Transformer has better performance than CsiNet.
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